An intrusion detection system (IDS) identifies whether the network traffic behavior is normal or abnormal or identifies the attack types. Recently, deep learning has emerged as a successful approach in IDSs, having a high accuracy rate with its distinctive learning mechanism. In this research, we developed a new method for intrusion detection to classify the NSL-KDD dataset by combining a genetic algorithm (GA) for optimal feature selection and long short-term memory (LSTM) with a recurrent neural network (RNN). We found that using LSTM-RNN classifiers with the optimal feature set improves intrusion detection. The performance of the IDS was analyzed by calculating the accuracy, recall, precision, f-score, and confusion matrix. The NSL-KDD dataset was used to analyze the performances of the classifiers. An LSTM-RNN was used to classify the NSL-KDD datasets into binary (normal and abnormal) and multi-class (Normal, DoS, Probing, U2R, and R2L) sets. The results indicate that applying the GA increases the classification accuracy of LSTM-RNN in both binary and multi-class classification. The results of the LSTM-RNN classifier were also compared with the results using a support vector machine (SVM) and random forest (RF). For multi-class classification, the classification accuracy of LSTM-RNN with the GA model is much higher than SVM and RF. For binary classification, the classification accuracy of LSTM-RNN is similar to that of RF and higher than that of SVM.
Abstract-We report on work that is part of the development of an agent-based structural health monitoring system. The data used are acoustic emission signals, and we classify these signals according to source mechanisms, those associated with crack growth being particularly significant. The agents are proxies for communication-and computation-intensive techniques and respond to the situation at hand by determining an appropriate constellation of techniques. It is critical that the system have a repertoire of classifiers with different characteristics so that a combination appropriate for the situation at hand can generally be found. We use unsupervised learning for identifying the existence and location of damage but supervised learning for identifying the type and severity of damage. The supervised learning techniques investigated are support vector machines (SVM), naive Bayes classifiers, and feed-forward neural networks (FNN). The unsupervised learning techniques investigated are k-means (with k equal to 3, 4, 5, and 6) and self-organizing maps (SOM, with 3, 4, 5, and 6 output neurons). For each technique except SOM, we tested versions with and without principal component analysis (PCA) to reduce the dimensionality of the data. We found significant differences in the characteristics of these machine learning techniques, with trade-offs between accuracy and fast classification runtime that can be exploited by the agents in finding appropriate combinations of classification techniques. The approach followed here can be generalized for exploring the characteristics of machine-learning techniques for monitoring various kinds of structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.