Background Emerging artificial intelligence (AI) technologies have diverse applications in medicine. As AI tools advance towards clinical implementation, skills in how to use and interpret AI in a healthcare setting could become integral for physicians. This study examines undergraduate medical students’ perceptions of AI, educational opportunities about of AI in medicine, and the desired medium for AI curriculum delivery. Methods A 32 question survey for undergraduate medical students was distributed from May–October 2021 to students to all 17 Canadian medical schools. The survey assessed the currently available learning opportunities about AI, the perceived need for learning opportunities about AI, and barriers to educating about AI in medicine. Interviews were conducted with participants to provide narrative context to survey responses. Likert scale survey questions were scored from 1 (disagree) to 5 (agree). Interview transcripts were analyzed using qualitative thematic analysis. Results We received 486 responses from 17 of 17 medical schools (roughly 5% of Canadian undergraduate medical students). The mean age of respondents was 25.34, with 45% being in their first year of medical school, 27% in their 2nd year, 15% in their 3rd year, and 10% in their 4th year. Respondents agreed that AI applications in medicine would become common in the future (94% agree) and would improve medicine (84% agree Further, respondents agreed that they would need to use and understand AI during their medical careers (73% agree; 68% agree), and that AI should be formally taught in medical education (67% agree). In contrast, a significant number of participants indicated that they did not have any formal educational opportunities about AI (85% disagree) and that AI-related learning opportunities were inadequate (74% disagree). Interviews with 18 students were conducted. Emerging themes from the interviews were a lack of formal education opportunities and non-AI content taking priority in the curriculum. Conclusion A lack of educational opportunities about AI in medicine were identified across Canada in the participating students. As AI tools are currently progressing towards clinical implementation and there is currently a lack of educational opportunities about AI in medicine, AI should be considered for inclusion in formal medical curriculum.
Background Rhabdomyolysis, the breakdown of skeletal muscles following an insult or injury, has been established as a possible complication of SARS-CoV-2 infection. Despite being highly effective in preventing COVID-19-related morbidity and mortality, several cases of COVID-19 mRNA vaccination-induced rhabdomyolysis have been identified. We provide the second description of a pediatric case of severe rhabdomyolysis presenting after COVID-19 mRNA vaccination. Case: diagnosis/treatment A 16-year-old male reported to the emergency department with a 2-day history of bilateral upper extremity myalgias and dark urine 2 days after his first dose of COVID-19 vaccine (Pfizer-BioNtech). The initial blood work showed an elevated creatinine kinase (CK) of 141,300 units/L and a normal creatinine of 69 umol/L. The urinalysis was suggestive of myoglobinuria, with the microscopy revealing blood but no red blood cells. Rhabdomyolysis was diagnosed, and the patient was admitted for intravenous hydration, alkalinization of urine, and monitoring of kidney function. CK levels declined with supportive care, while his kidney function remained normal, and no electrolyte abnormalities developed. The patient was discharged 5 days after admission as his symptoms resolved. Conclusion While vaccination is the safest and most effective way to prevent morbidity from COVID-19, clinicians should be aware that rhabdomyolysis could be a rare but treatable adverse event of COVID-19 mRNA vaccination. With early recognition and diagnosis and supportive management, rhabdomyolysis has an excellent prognosis.
This systematic review explores the use of artificial intelligence (AI) in the analysis of biofluid markers in age-related macular degeneration (AMD). We detail the accuracy and validity of AI in diagnostic and prognostic models and biofluid markers that provide insight into AMD pathogenesis and progression. This review was conducted in accordance with the Preferred Reporting Items for a Systematic Review and Meta-analysis guidelines. A comprehensive search was conducted across 5 electronic databases including Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, EMBASE, Medline, and Web of Science from inception to July 14, 2021. Studies pertaining to biofluid marker analysis using AI or bioinformatics in AMD were included. Identified studies were assessed for risk of bias and critically appraised using the Joanna Briggs Institute Critical Appraisal tools. A total of 10,264 articles were retrieved from all databases and 37 studies met the inclusion criteria, including 15 cross-sectional studies, 15 prospective cohort studies, five retrospective cohort studies, one randomized controlled trial, and one case–control study. The majority of studies had a general focus on AMD (58%), while neovascular AMD (nAMD) was the focus in 11 studies (30%), and geographic atrophy (GA) was highlighted by three studies. Fifteen studies examined disease characteristics, 15 studied risk factors, and seven guided treatment decisions. Altered lipid metabolism (HDL-cholesterol, total serum triglycerides), inflammation (c-reactive protein), oxidative stress, and protein digestion were implicated in AMD development and progression. AI tools were able to both accurately differentiate controls and AMD patients with accuracies as high as 87% and predict responsiveness to anti-VEGF therapy in nAMD patients. Use of AI models such as discriminant analysis could inform prognostic and diagnostic decision-making in a clinical setting. The identified pathways provide opportunity for future studies of AMD development and could be valuable in the advancement of novel treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.