Using array comparative genome hybridisation (CGH) 41 de novo reciprocal translocations and 18 de novo complex chromosome rearrangements (CCRs) were screened. All cases had been interpreted as ''balanced'' by conventional cytogenetics. In all, 27 cases of reciprocal translocations were detected in patients with an abnormal phenotype, and after array CGH analysis, 11 were found to be unbalanced. Thus 40% (11 of 27) of patients with a ''chromosomal phenotype'' and an apparently balanced translocation were in fact unbalanced, and 18% (5 of 27) of the reciprocal translocations were instead complex rearrangements with .3 breakpoints. Fourteen fetuses with de novo, apparently balanced translocations, all but two with normal ultrasound findings, were also analysed and all were found to be normal using array CGH. Thirteen CCRs were detected in patients with abnormal phenotypes, two in women who had experienced repeated spontaneous abortions and three in fetuses. Sixteen patients were found to have unbalanced mutations, with up to 4 deletions. These results suggest that genome-wide array CGH may be advisable in all carriers of ''balanced'' CCRs. The parental origin of the deletions was investigated in 5 reciprocal translocations and 11 CCRs; all were found to be paternal. Using customised platforms in seven cases of CCRs, the deletion breakpoints were narrowed down to regions of a few hundred base pairs in length. No susceptibility motifs were associated with the imbalances. These results show that the phenotypic abnormalities of apparently balanced de novo CCRs are mainly due to cryptic deletions and that spermatogenesis is more prone to generate multiple chaotic chromosome imbalances and reciprocal translocations than oogenesis.
Beyond the disorders recognized as mitochondrial diseases, abnormalities in function and/or ultrastructure of mitochondria have been reported in several unrelated pathologies. These encompass ageing, malformations, and a number of genetic or acquired diseases, as diabetes and cardiologic, haematologic, organ-specific (e.g., eye or liver), neurologic and psychiatric, autoimmune, and dermatologic disorders. The mechanistic grounds for mitochondrial dysfunction (MDF) along with the occurrence of oxidative stress (OS) have been investigated within the pathogenesis of individual disorders or in groups of interrelated disorders. We attempt to review broad-ranging pathologies that involve mitochondrial-specific deficiencies or rely on cytosol-derived prooxidant states or on autoimmune-induced mitochondrial damage. The established knowledge in these subjects warrants studies aimed at elucidating several open questions that are highlighted in the present review. The relevance of OS and MDF in different pathologies may establish the grounds for chemoprevention trials aimed at compensating OS/MDF by means of antioxidants and mitochondrial nutrients.
BackgroundKabuki syndrome (Niikawa-Kuroki syndrome) is a rare, multiple congenital anomalies/mental retardation syndrome characterized by a peculiar face, short stature, skeletal, visceral and dermatoglyphic abnormalities, cardiac anomalies, and immunological defects. Recently mutations in the histone methyl transferase MLL2 gene have been identified as its underlying cause.MethodsGenomic DNAs were extracted from 62 index patients clinically diagnosed as affected by Kabuki syndrome. Sanger sequencing was performed to analyze the whole coding region of the MLL2 gene including intron-exon junctions. The putative causal and possible functional effect of each nucleotide variant identified was estimated by in silico prediction tools.ResultsWe identified 45 patients with MLL2 nucleotide variants. 38 out of the 42 variants were never described before. Consistently with previous reports, the majority are nonsense or frameshift mutations predicted to generate a truncated polypeptide. We also identified 3 indel, 7 missense and 3 splice site.ConclusionsThis study emphasizes the relevance of mutational screening of the MLL2 gene among patients diagnosed with Kabuki syndrome. The identification of a large spectrum of MLL2 mutations possibly offers the opportunity to improve the actual knowledge on the clinical basis of this multiple congenital anomalies/mental retardation syndrome, design functional studies to understand the molecular mechanisms underlying this disease, establish genotype-phenotype correlations and improve clinical management.
The present study was aimed at verifying the occurrence, if any, of in vivo oxidative DNA damage in FA homozygotes, their parents and siblings. 8-Hydroxy-2'-deoxyguanosine (8-OHdG) was measured, by HPLC/EC, in DNA from circulating blood leucocytes from FA homozygotes and their relatives and compared with a group of paediatric and adult healthy subjects. The population studied consisted of: (i) 15 FA homozygotes; (ii) 24 FA heterozygotes; (iii) 11 siblings. The 8-OHdG level in FA homozygotes was significantly higher with respect to age-matched controls, with a mean level of 33.3 +/- 6.8 (mean +/- SE) and 3.9 +/- 0.26 8-OHdG/10(5) dG respectively. The FA parents (heterozygotes) also displayed higher 8-OHdG levels relative to controls. The release of hydroxyl (.OH) and .OH-like radicals from leucocytes was determined by luminol-dependent chemiluminescence (LDCL) in a subgroup of FA homo- and heterozygotes, showing a very large in vivo formation of non-superoxide radicals. Chromosomal instability was also measured in the FA population. When relating either 8-OHdG or LDCL levels to spontaneous or diepoxybutane-induced chromosomal instability (S-CI and DEB-CI respectively), a significant correlation was observed between the 8-OHdG, LDCL and S-CI data. Within families a positive association was found between 8-OHdG levels in homozygotes and their related heterozygotes, suggesting segregation of the genetic defect(s) underlying the abnormal oxidative metabolism. The present study provides evidence for an in vivo pro-oxidant state in FA, in terms of excess formation of .OH and .OH-like radicals, and of DNA hydroxyl adducts. This finding appears to be shared by homozygotes and, to a lesser extent, by heterozygotes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.