Multi-Input Multi-Output (MIMO) techniques can be used to increase the data rate for a given bit error rate (BER) and transmission power. Due to the small form factor, energy and processing constraints of wireless sensor nodes, a cooperative Virtual MIMO as opposed to True MIMO system architecture is considered more feasible for wireless sensor network (WSN) applications. Virtual MIMO with Vertical-Bell Labs Layered Space-Time (V-BLAST) multiplexing architecture has been recently established to enhance WSN performance. In this paper, we further investigate the impact of different modulation techniques, and analyze for the first time, the performance of a cooperative Virtual MIMO system based on V-BLAST architecture with multi-carrier modulation techniques. Through analytical models and simulations using real hardware and environment settings, both communication and processing energy consumptions, BER, spectral efficiency, and total time delay of multiple cooperative nodes each with single antenna are evaluated. The results show that cooperative Virtual-MIMO with Binary Phase Shift Keying-Wavelet based Orthogonal Frequency Division Multiplexing (BPSK-WOFDM) modulation is a promising solution for future high data-rate and energy-efficient WSNs.
The adoption of embedded systems, mobile devices and other smart devices keeps rising globally, and the scope of their involvement broadens, for instance, in smart city-like scenarios. In light of this, a pressing need emerges to tame such complexity and reuse as much tooling as possible without resorting to vertical ad hoc solutions, while at the same time taking into account valid options with regard to infrastructure management and other more advanced functionalities. Existing solutions mainly focus on core mechanisms and do not allow one to scale by leveraging infrastructure or adapt to a variety of scenarios, especially if actuators are involved in the loop. A new, more flexible, cloud-based approach, able to provide device-focused workflows, is required. In this sense, a widely-used and competitive framework for infrastructure as a service, such as OpenStack, with its breadth in terms of feature coverage and expanded scope, looks to fit the bill, replacing current application-specific approaches with an innovative application-agnostic one. This work thus describes the rationale, efforts and results so far achieved for an integration of IoT paradigms and resource ecosystems with such a kind of cloud-oriented device-centric environment, by focusing on a smart city scenario, namely a park smart lighting example, and featuring data collection, data visualization, event detection and coordinated reaction, as example use cases of such integration.
Wireless sensor networks (WSNs) are an enabling technology of context-aware systems. The Internet of Things (IoT), which has attracted much attention in recent years, is an emerging paradigm where everyday objects and spaces are made context-aware and interconnected through heterogeneous networks on a global scale. However, the IoT system can suffer from poor performances when its underlying networks are not optimized. In this paper, an ontology model for representing and facilitating context sharing between network entities in WSNs is proposed for the first time. The context model aims to enable optimal context-aware management of WSNs in IoT, which will also harness the rich context knowledge of IoT systems
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.