The effects of magnesium (Mg) and citrate on the metastable limit of calcium oxalate (CaOx) solubility (synonym: tolerable oxalate TO) were examined in artificial urine and in postprandial urine of male patients with idiopathic calcium urolithiasis (ICU). In artificial urine increasing pH, Mg and citrate elevate TO, decrease CaOx supersaturation only marginally, but elevate considerably free citrate; the effect of Mg alone was small in comparison with citrate alone, and the effects of both substances appeared additive. In ICU patients, matched for sex, age and CaOx supersaturation to non-stone-forming controls, TO was decreased (mean values 0.33 vs. 0.52 mM/l in controls, P < 0.05). Additional significant (P < 0.05) differences were found between ICU and controls: the former exhibited increased CaOx crystal growth, decreased crystal agglomeration time, a more acidic urinary pH, increased concentrations of free calcium and free Mg, and decreased free oxalate and free citrate. After ingestion of a urine-acidifying test meal, or this meal supplemented with either neutral Mg citrate or Mg-alkali citrate, by three groups of male ICU patients, matched for age and CaOx supersaturation, only the last-named preparation evoked an increase in TO and a decrease in crystal diameter, while the normally occurring pH decline from fasting urine was virtually abolished, and the ratios urinary Mg/citrate and calcium/citrate tended towards low values. In contrast, Mg citrate increased crystal agglomeration time, while changes in the other parameters were only insignificant. The crystals formed in urine were CaOx di- and monohydrate (by electron microscopy), and energy dispersive X-ray analysis showed calcium peaks exclusively. However, chemical analysis of crystals verified the presence not only of oxalate and calcium, but also of Mg, phosphate, citrate, and urate; moreover, these crystal constituents seemed to be influenced by Mg citrate and Mg-alkali citrate in different ways. It was concluded that (1) Mg and citrate are effectors of TO in artificial and natural urine; (2) in ICU, low TO and other disturbed CaOx crystallization parameters appear related to the prevailing low urinary pH and low free citrate; (3) Mg-alkali citrate inhibits CaOx crystallization, probably via actions of the citrate, but not the Mg. Because of the eminent role of Mg in human health and ICU, further studies on crystallization after oral intake of Mg in the form of citrate are warranted.
To determine whether an "atherogenic" diet (excess of cholesterol and neutral fat) induces pathological calcification in various organs, including the kidney, and abnormal oxalate metabolism, 24 male Sprague-Dawley rats were fed either normal lab chow (controls, n = 12) or the cholesterol- and fat-rich experimental diet (CH-F, n = 12) for 111 +/- 3 days. CH-F rats developed dyslipidemia [high blood levels of triglycerides, total, low-density lipoprotein (LDL)-, very low-density lipoprotein (VLDL)-, high-density lipoprotein (HDL)-bound cholesterol, total phospholipids], elevated serum total alkaline phosphatase and lactate dehydrogenase (LDH) levels, in the absence of changes in overall renal function, extracellular mineral homeostasis [serum protein-corrected total calcium, magnesium, parathyroid hormone (PTH), 1,25-dihydroxyvitamin D (1,25(OH)2D)], plasma glycolate and oxalate levels. There was a redistribution of bone calcium and enhanced exchange of this within the extraosseous space, which was accompanied by significant bone calcium loss, but normal bone histomorphometry. Liver oxalate levels, if expressed per unit of defatted (DF) dry liver, were three times higher than in the controls. Urinary glycolate, oxalate, calcium and total protein excretion levels were elevated, the latter showing an excess of proteins > 100 kD and a deficit of proteins > 30-50 kD. Urinary calcium oxalate supersaturation was increased, and calcium phosphate supersaturation was unchanged. There were dramatically increased (by number, circumference, and area) renal calcium phosphate calcifications in the cortico-medullary region, but calcium oxalate deposits were not detectable. Electron microscopy (EM) and elemental analysis revealed intratubular calcium phosphate, apparently needle-like hydroxyapatite. Immunohistochemistry of renal tissue calcifications revealed co-localization of phospholipids and calcium phosphate. It is concluded that rats fed the CH-F diet exhibited: (1) a spectrum of metabolic abnormalities, the more prominent being dyslipidemia, hyperoxaluria, hypercalciuria, dysproteinuria, loss of bone calcium, and calcium phosphate nephrocalcinosis (NC); and (2) an interaction between calcium phosphate and phospholipids at the kidney level. The biological significance of these findings for the etiology of idiopathic calcium urolithiasis in humans is uncertain, but the presented animal model may be helpful when designing clinical studies.
In IRCU 1) renal stones in situ in combination with high fasting uricemia, high hypoxanthinuria and protein-uria, and high MA suggest that a systemic metabolic anomaly underlies stone formation; 2) antioxidant deficit is frequent, unrelated to the presence or absence of stones but apparently related to poor renal uric acid recycling, low uricemia and albuminemia, exaggerated urinary Pi excretion, and low MA; 3) the combination of low plasma TAS, disordered Ca/Pi and other mineral ratios in urine, plasma and RBCs, but unchanged urinary Ca salt supersaturation is compatible with the view that CaPi solid and Ca microlith formation start inside oxidatively damaged cells.
Summary:With the aim of revealing a possible magnesium (Mg) deficiency in the aetiology of idiopathic recurrent calcium urolithiasis we studied the Mg content of red blood cells, serum total, protein-bound, ionised and complexed fractions of Mg, and urinary Mg after an overnight fast. The two study groups comprised 12 male recurrent calcium urolithiasis patients and 12 healthy male controls (mean age 31 and 29 years, respectively). In recurrent calcium urolithiasis, serum albumin and Mg of erythrocytes were significantly decreased, as was serum total and proteinbound Mg, whereas serum ultrafiltrable, ionised and complexed Mg were statistically indistinguishable from values in controls. Urinary Mg (per unit creatinine) in recurrent calcium urolithiasis (mean 0.188 vs 0.209 in controls; p = 0.386) was not statistically different, whereas urinary total protein, glucose, and pH were significantly increased. The renal clearances of Mg and glucose were positively correlated (r = 0.56; p < 0.01), with a steeper slope in recurrent calcium urolithiasis than controls. Further fractionation of serum and urinary Mg into ions and complexes in recurrent calcium urolithiasis subjects with identical creatinine clearance revealed no statistical difference between 1) Mg ions and complexes filtered by renal glomeruli; 2) Mg ions and complexes excreted in urine; 3) fractional Mg excretion.Median urine supersaturation with respect to calcium oxalate was insignificantly lower (1.5 vs 2.2), with respect to hydroxyapatite insignificantly higher (3.3 vs 1.8), than in controls.It is concluded that relatively young recurrent calcium urolithiasis patients exhibit a deficiency of Mg in erythrocytes and serum total Mg, but no alteration of renal Mg handling. Thus, in recurrent calcium urolithiasis, a role of Mg deficiency in urine as a factor initiating stone formation may be ruled out, whereas a possible link between cellular Mg deficiency and the impairment of renal tubular functions involved in reabsorption of glucose and proteins, and in urine acidification, deserves further studies.
In idiopathic recurrent urolithiasis (IRCU) calcium oxalate and calcium phosphate are components of stones. It is not sufficiently known whether in urine the nucleation (liquid-solid transition) of each salt requires a different environment, if so which environment, and whether there is an impact on stone formation. Nucleation was induced by in vitro addition of oxalate or calcium to post-test meal load whole urine of male stone patients (n=48), showing normal daily and baseline fasting oxaluria. The maximally tolerated (until visible precipitates occur) concentration of oxalate (T-Ox) or calcium (T-Ca) was determined; additionally evaluated were other variables in urine, including total, complexed and free citrate (F-Cit), protein (albumin, non-albumin protein) and the clinical intensity (synonymous metabolic activity; MA) of IRCU. In the first of three trials the accumulation of substances in stone-forming urine was verified (trial-V); in the second (clinical trial 1) two strata of T-Ox (Low, High) were compared; in the third (clinical trial 2) IRCU patients (n=27) and a control group (n=13) were included to clarify whether in stone-forming urine the first crystal formed was calcium oxalate or calcium phosphate, and to identify the state of F-Cit. T-Ox was studied at the original pH (average < 6.0), T-Ca at prefixed pH 6.0; the precipitates were subjected to electron microscopy and element analysis. Trial-V: Among the urinary substances accumulating at the indicated pHs were calcium, oxalate and phosphate, and the crystal-urine ratios were compatible with the nucleation of calcium oxalate, calcium-poor and calcium-rich calcium phosphate; citrate, protein and potassium also accumulated. Clinical trial 1: the two strata exhibited an inverse change of T-Ox and T-Ca, the ratio T-Ox/T-Ca and MA. The initial (before induction of Ox or Ca excess) supersaturation of calcium oxalate and brushite were unchanged, with the difference of proteinuria being borderline. Several correlations were significant (p < or = 0.05): urine pH with citrate and volume, protein with volume and MA, T-Ox with T-Ca and MA. Clinical trial 2: in patients with reduced urine volume and moderate urine calcium excess, the first precipitate appeared to be calcium oxalate, followed by amorphous calcium phosphate. Conversely, when the calcium excess was extreme, calcium-rich hydroxyapatite developed, followed by calcium oxalate; F-Cit, not total and complexed citrate, was decreased in IRCU vs. male controls; F-Cit rose pH-dependently, and the ratio F-Cit at original pH vs. F-Cit at pH 6.0 correlated inversely with the nucleation index T-Ox/T-Ca; MA correlated inversely with the ratio F-Cit at pH 6.0, respectively, original pH, but directly with the urinary albumin/non-albumin protein ratio. In summary 1) to study calcium oxalate and calcium phosphate nucleation in whole urine of IRCU patients is feasible; 2) at this crystallization stage the two substances, dominant in calcium stones, appear intimately linked, 3) in stone-forming urine, calcium phosph...
The bone mineral density (BMD) and the associated extracellular status of mineral and acid-base metabolism were evaluated in 11 males, 3-18 years after total gastrectomy (GX). In the lumbar spine, but not in the femoral neck, BMD was decreased in seven, normal in three, and falsely high in one individual. Relative to the limits of normalcy, fasting serum levels of gastrin were low, but normal for calcium, phosphorus, parathyroid hormone, calcitonin and vitamin D, while the level of total alkaline phosphatase was elevated; fasting urine pH and calcium were low, while phosphorus and net acid were high. Regression analyses revealed serum gastrin and phosphorus, and urinary net acid as possible predictors of BMD. It was concluded that over the long-term GX evokes low BMD, but not hyperparathyroidism and deranged vitamin D metabolites. Future studies may focus on gastrin, parathyroid hormone-independent hyperphosphaturia and disturbed acid-base metabolism as indicators of a new extra-cellular equilibrium of minerals.
BackgroundIn IRCU it is uncertain whether variation of urinary protein, especially non-albumin protein (NAlb-P), is due to the presence of stones or reflects alteration of oxidative metabolism.AimsTo validate in a tripartite cross-sectional study of 187 ambulatory male patients, undergoing a standardized laboratory programme, whether stones impact on N-Alb-P or the state of oxidative metabolism interferes with IRCU pathophysiology.MethodsIn part 1 the strata low and high of fasting urinary excretion rate per 2 h of N-Alb-P, malonedialdehyde, hypoxanthine, xanthine, pH and other urine components were compared, and association with renal stones in situ evaluated; in part 2 the co-variation of oxidatively modulated environment, fasting urinary pH, calcium (Ca) salt crystallization risk and the number of patients with stones in situ was examined; in part 3, the nucleation of Ca oxalate and Ca phosphate was tested in undiluted postprandial urine of patients and related to the state of oxidative metabolism.ResultsIn part 1, N-Alb-P excretion > 4.3 mg was associated with increase of blood pressure, excretion of total protein, hypoxanthine (a marker of tissue hypoxia), malonedialdehyde (a marker of lipid peroxidation), sodium, magnesium, citrate, uric acid, volume, pH, and increase of renal fractional excretion of both NAlb-P and uric acid; when stones were present, urinary pH was elevated but other parameters were unaffected. Significant predictors of N-Alb-P excretion were malonedialdehyde, fractional N-Alb-P and hypoxanthine. In part 2, urine pH > 6.14 was associated with unchanged blood pressure and plasma vasopressin, increase of blood pH, urinary volume, malonedialde hyde, fractional excretion of N-Alb-P, uric acid, Ca phosphate, but not Ca oxalate, supersaturation; this spectrum was accompanied by decrease of concentration of urinary total and free magnesium, total and complexed citrate, plasma uric acid (in humans the major circulating antioxidant) and insulin; the number of stone-bearing patients was increased. Significant predictors of urine pH were body mass index, plasma insulin and uric acid (negative), and urinary xanthine (positive). In part 3 low plasma uric acid, not high urinary malonedialdehyde or high ratio malonedialdehyde/uric acid was significantly associated with diminished Ca but not oxalate tolerance, with the first nucleating crystal type being mostly Ca phosphate (hydroxyapatite), in the rest Ca oxalate dihydrate; uricemia correlated marginally positively (p = 0.055) with Ca tolerance of urine, stronger with blood pressure and insulin, and negatively with urinary xanthine, fractional N-Alb-P, volume, sodium.ConclusionsIn IRCU 1) not renal stones in situ, but disturbed oxidative metabolism apparently modulates nephron functionality, ending up in higher renal NAlb-P release, urinary volume, sodium and pH of fasting urine; 2) etiologically unknown decline of uricemia may represent antioxidant deficiency and cause a risk of hydroxyapatite crystallization and stone formation in a weakly acidic or a...
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers