Search citation statements

Paper Sections

Select...

5

Citation Types

0

11

0

Year Published

2015

2015

Publication Types

Select...

4

Relationship

2

2

Authors

Journals

0

11

0

“…For the latter, they show the problem is weakly NP-hard. For recent works with two-agent settings, the reader may refer to Cheng (2012), Cheng et al (2013), Elvikis and Kindt (2014), Mosheiov (2013, 2014), Yin et al (2012aYin et al ( , b, c, 2013a and Wu et al (2013Wu et al ( , 2014a, etc. For more other details with multiagent scheduling issues, the reader may refer to the book by Agnetis et al (2014).…”

confidence: 97%

“…For the latter, they show the problem is weakly NP-hard. For recent works with two-agent settings, the reader may refer to Cheng (2012), Cheng et al (2013), Elvikis and Kindt (2014), Mosheiov (2013, 2014), Yin et al (2012aYin et al ( , b, c, 2013a and Wu et al (2013Wu et al ( , 2014a, etc. For more other details with multiagent scheduling issues, the reader may refer to the book by Agnetis et al (2014).…”

confidence: 97%

“…Yin and his partners carry out some related works on two-agent problem in single machine (Wu et al 2013;Yin et al 2012;Wang et al, 2015). They provide complexity results for two-agent problems with due date determination, propose a BB algorithm and a marriage in honey bees optimization algorithm for the problem with ready times and present a GA for the problem with learning effects.…”

confidence: 99%

“…The objective is to minimize the total tardiness of jobs from the first agent given that the maximum tardiness of jobs from the second agent does not exceed an upper bound. Yin, Cheng, Cheng, Wu, and Wu (2012) consider several two-agent scheduling problems with assignable due dates and give polynomial-time algorithm. Liu, Yi, Zhou, and Gong (2013) discuss the optimal properties of two-agent scheduling with sum-ofprocessing-times-based deterioration and present some polynomial time algorithms.…”

confidence: 99%

“…The objective is to minimize the total tardiness of jobs from the first agent given that the maximum tardiness of jobs from the second agent does not exceed an upper bound. Yin et al [6] consider several twoagent single-machine scheduling problems with assignable due dates and provide polynomial-time algorithms. Liu et al [7] discuss * Tel.…”

confidence: 99%