Germline mutations in the cylindromatosis (CYLD) gene have been described in families with cylindromas, trichoepitheliomas, and/or spiradenomas. Brooke-Spiegler syndrome (BSS) is the autosomal dominant predisposition to skin appendageal neoplasms including cylindromas, trichoepitheliomas, and/or spiradenomas. We review the clinical features, molecular genetics, and the animal models of BSS. To date, a total of 51 CYLD mutations have been reported, occurring in exons 9–20, in 73 families with diverse ethnic and racial backgrounds. Of 51 mutations, 86% are expected to lead to truncated proteins. The seven missense mutations reported to date occur only within the ubiquitin-specific protease (USP) domain of the CYLD protein and most are associated exclusively with multiple familial trichoepithelioma. CYLD functions as a tumor suppressor gene. CYLD encodes a deubiquitinating (DUB) enzyme that negatively regulates the NF-kappaB and c-Jun N-terminal kinase pathways. CYLD DUB activity is highly specific for lysine 63 (K63)-linked ubiquitin (Ub) chains but has been shown to act on K48-linked Ub chains as well. In 2008 the CYLD USP domain was crystallized, revealing that the truncated Fingers subdomain confers CYLD’s unique specificity for K63-linked ubiquitin chains. Recent work using animal models revealed new roles for CYLD in immunity, lipid metabolism, spermatogenesis, osteoclastogenesis, anti-microbial defense and inflammation.