2021
DOI: 10.1016/j.algal.2021.102346
|View full text |Cite
|
Sign up to set email alerts
|

Technologies for improving microalgae biomass production coupled to effluent treatment: A life cycle approach

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
1
0
3

Year Published

2022
2022
2024
2024

Publication Types

Select...
5
2
1

Relationship

0
8

Authors

Journals

citations
Cited by 39 publications
(4 citation statements)
references
References 54 publications
0
1
0
3
Order By: Relevance
“…Combining microalgae cultivation with anaerobic digestion or other processes can enhance the overall efficiency of wastewater treatment and facilitate the recovery of valuable resources. Investigating the synergistic effects of different treatment methods can lead to more sustainable and integrated wastewater treatment approaches (Magalhães et al 2021 ). Additionally, conducting a comprehensive life cycle assessment (LCA) of microalgae-based wastewater treatment and biodiesel production is crucial for evaluating the environmental and economic sustainability of the process.…”
Section: Future Prospects Of This Studymentioning
confidence: 99%
“…Combining microalgae cultivation with anaerobic digestion or other processes can enhance the overall efficiency of wastewater treatment and facilitate the recovery of valuable resources. Investigating the synergistic effects of different treatment methods can lead to more sustainable and integrated wastewater treatment approaches (Magalhães et al 2021 ). Additionally, conducting a comprehensive life cycle assessment (LCA) of microalgae-based wastewater treatment and biodiesel production is crucial for evaluating the environmental and economic sustainability of the process.…”
Section: Future Prospects Of This Studymentioning
confidence: 99%
“…Atualmente, a biotecnologia microalgal está ajudando a bioeconomia global, produzindo biomassa de alto valor para aplicações relacionadas ao ser humano, como alimentos, cosméticos e produtos farmacêuticos (Bhalamurugan et al, 2018;Magalhães et al, 2021). No âmbito da bioeconomia circular, as microalgas podem recuperar os nutrientes provenientes de águas residuárias da produção de animais de volta ao solo na produção agrícola, ser fonte de biocombustíveis, gerar mais renda para as instalações produtivas (Ferreira et al, 2018;Ferreira et al, 2021;Alvarez et al, 2021) e avançar a bioeconomia circular na indústria hídrica por meio da valorização de bioprodutos de microalgas (Arashiro et al, 2022).…”
Section: Bioeconomia De Microalgasunclassified
“…如化石柴油(€1.0 kg −1 )、豆油和豆粕(€0.5 kg −1 ) [17] ,仍不具备竞争力。 然而,该工艺路线的原位模式难以实施,因为微藻培养地点必须位于火力发电厂附近。火力发 电厂需要大量的水才能运行,通常位于自然水体附近,周围通常是农业或林业用地 [25] 。这与开放培 养系统对大面积非农业土地的需求相冲突。此外,全年温和稳定的气候是保证生物质生产满足长期 连续运行降低成本的期望所必需的。虽然一些研究声称可以利用火电厂烟气余热来确保开放系统即 使在寒冷的冬季也能运行 [26] ,但还需要更多的研究来证明其可行性。 虽然为了固碳的目的将燃煤电厂烟气引入该工艺路线 [27] ,但许多研究表明该系统并没有达到预 期的减排效果。在室外培养中,引入 6564 L 烟气和 538 L 的 CO2 后,微藻生物量仅增加 0.29 g [28] 。由 在该系统中,微藻生长的碳源是碳酸氢盐而不是 CO2,因此 PBR 中的培养基将呈碱性,并且随 着微藻吸收碳酸氢盐并将其转化为碳酸盐,培养基的碱度将逐渐增加。而且碳酸氢盐中的阳离子也 会赋予介质一定的盐度。这些都对微藻物种的耐受性提出了要求 [29] 。根据多年的研究,发现多种微 藻物种可以适应这种场景下产生的高盐和高 pH 环境,如小球藻 [30] 、链带藻 [31] 、杜氏盐藻 [32] 、螺旋藻 等 [33] 。从海水或盐湖中分离的蓝藻和真核藻类在此技术路线上适应性较好,可优先考虑。Borovkov 等 [34]…”
Section: 微藻的碳源和培养系统unclassified