2015
DOI: 10.1016/j.ijpharm.2015.08.083
|View full text |Cite
|
Sign up to set email alerts
|

Targeted doxorubicin nanotherapy strongly suppressing growth of multidrug resistant tumor in mice

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

2
14
0

Year Published

2016
2016
2020
2020

Publication Types

Select...
8
1

Relationship

2
7

Authors

Journals

citations
Cited by 43 publications
(16 citation statements)
references
References 37 publications
2
14
0
Order By: Relevance
“…It is stated that NPs in the range of 100–200 nm have the highest potential to extend circulation time in the bloodstream because they are small enough to avoid mechanical filtration by the spleen, but large enough to avoid selective uptake in the liver. Small size permits NPs passively targeting tumor cells through the enhanced permeability and retention (EPR) effect, improving intracellular accumulation and localization of NPs in tumor area [21, 22]. Another important parameter that controls the stability of NPs in physiological condition is zeta potential.…”
Section: Resultsmentioning
confidence: 99%
“…It is stated that NPs in the range of 100–200 nm have the highest potential to extend circulation time in the bloodstream because they are small enough to avoid mechanical filtration by the spleen, but large enough to avoid selective uptake in the liver. Small size permits NPs passively targeting tumor cells through the enhanced permeability and retention (EPR) effect, improving intracellular accumulation and localization of NPs in tumor area [21, 22]. Another important parameter that controls the stability of NPs in physiological condition is zeta potential.…”
Section: Resultsmentioning
confidence: 99%
“…Pluronic polymer-based micelles, to which folic acid (FA), redox-sensitive thiol groups and the anti-cancer drug doxorubicin (DOX) are chemically conjugated with pH-sensitive linkers, could be successfully delivered into multidrug-resistant (MDR) tumors in mice and exerted high cytotoxicity in the DOX-resistant MDR tumors by bypassing MDR efflux [57]. The carboxylate graphene oxide (GO)-based nanocarrier was multifunctionalized by poly(ethylene glycol) (PEG) terminated with an amino group and an FA group (FA–PEG–NH 2 ) via the amidation reaction.…”
Section: Application Of Engineered Biological Molecules To Nanobio/bimentioning
confidence: 99%
“…Nanoparticles in the range of 100 to 200 nm can avoid mechanical filtration by the spleen due to their small size but are also large enough to avoid selective uptake in the liver, and thus their bloodstream circulation time can be extended. Furthermore, due to their small size and a mechanism called the enhanced permeability and retention (EPR) effect, the passive targeting of tumor cells is possible, and their intracellular accumulation and localization in the tumor area are improved [24,25]. The ζ-potential is another important parameter, as negatively charged nanoparticles are not only significantly less phagocytized than positive ones but also possess improved physical stability [26].…”
Section: Introductionmentioning
confidence: 99%