2021
DOI: 10.33774/chemrxiv-2021-fgnrk-v2
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Speeding up quantum dissipative dynamics of open systems with kernel methods

Abstract: The future forecasting ability of machine learning (ML) makes ML a promising tool for predicting long-time quantum dissipative dynamics of open systems. In this Article, we employ nonparametric machine learning algorithm (kernel ridge regression as a representative of the kernel methods) to study the quantum dissipative dynamics of the widely-used spin-boson model. Our ML model takes short-time dynamics as an input and is used for fast propagation of the long-time dynamics, greatly reducing the computational e… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2021
2021
2021
2021

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 42 publications
0
0
0
Order By: Relevance