2015
DOI: 10.1109/iccas.2015.7364994
View full text
|
|
Share

Abstract: Sparse principal component analysis (SPCA) imposes extra constraints or penalty terms to the standard PCA to achieve sparsity. In this paper, we introduce an efficient algorithm for finding an effective sparse feature principal component (PC) of multiple physiological signals. The algorithm consists of two stages. In the first stage, it identifies an active index set with a desired cardinality corresponding to the nonzero entries of the PC. In the second one, it uses the power iteration method to find the bes…

Expand abstract