2015
DOI: 10.1021/cr5006217
|View full text |Cite
|
Sign up to set email alerts
|

Recent Advancement of Nanostructured Carbon for Energy Applications

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

4
346
0
2

Year Published

2017
2017
2023
2023

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 741 publications
(368 citation statements)
references
References 619 publications
4
346
0
2
Order By: Relevance
“…The specific areal capacitance of our solid‐state fiber device with PVA/KOH electrolyte at 0.41 mA cm −2 is ≈2–350 times of previously reported solid‐state fiber SCs measured at much lower rates (typically 0.01–0.1 mA cm −2 ) reported so far (see Table S1, Supporting Information) 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36. More importantly, both the areal energy and power densities of 18.83 µWh cm −2 and 16.33 mW cm −2 based on the device (75.32 µWh cm −2 and 65.32 mW cm −2 based on one electrode) are substantially higher than those of previous advanced fiber devices using hollow rGO/PEDOT: PSS fiber (6.8 µWh cm −2 , 0.166 mW cm −2 ),30 rGO/MnO 2 /PPy@metal yarn (9.2 µWh cm −2 , 1.5 mW cm −2 ),31 MnO 2 /CNT fiber (8.5 µWh cm −2 ),20 PPy@CNTs@urethane elastic fibers (6.13 µWh cm −2 , 0.133 mW cm −2 ),26 GO/CNT@carboxymethyl cellulose fibers (3.84 µWh cm −2 , 0.19 mW cm −2 ),5 and nanoporous Au wire@MnO 2 //CNT/carbon fibers (5.4 µWh cm −2 , 2.53 mW cm −2 ) 36.…”
supporting
confidence: 59%
See 3 more Smart Citations
“…The specific areal capacitance of our solid‐state fiber device with PVA/KOH electrolyte at 0.41 mA cm −2 is ≈2–350 times of previously reported solid‐state fiber SCs measured at much lower rates (typically 0.01–0.1 mA cm −2 ) reported so far (see Table S1, Supporting Information) 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36. More importantly, both the areal energy and power densities of 18.83 µWh cm −2 and 16.33 mW cm −2 based on the device (75.32 µWh cm −2 and 65.32 mW cm −2 based on one electrode) are substantially higher than those of previous advanced fiber devices using hollow rGO/PEDOT: PSS fiber (6.8 µWh cm −2 , 0.166 mW cm −2 ),30 rGO/MnO 2 /PPy@metal yarn (9.2 µWh cm −2 , 1.5 mW cm −2 ),31 MnO 2 /CNT fiber (8.5 µWh cm −2 ),20 PPy@CNTs@urethane elastic fibers (6.13 µWh cm −2 , 0.133 mW cm −2 ),26 GO/CNT@carboxymethyl cellulose fibers (3.84 µWh cm −2 , 0.19 mW cm −2 ),5 and nanoporous Au wire@MnO 2 //CNT/carbon fibers (5.4 µWh cm −2 , 2.53 mW cm −2 ) 36.…”
supporting
confidence: 59%
“…As for practical applications with microscale fiber devices, the areal performance is becoming an increasingly important evaluation metric, since the active material mass and the device volume are usually negligible 7. However, the major bottleneck for the existing fiber m‐SCs lies in their much lower areal energy density relative to routine planar SCs8 or batteries 2. In this context, considerable efforts were concentrated on exploring proper fiber electrode materials with large capacitance for improving the energy density, while maintaining high power density 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17.…”
mentioning
confidence: 99%
See 2 more Smart Citations
“…It has unique mechanical, electronic, chemical, optical, and thermal properties [1][2][3][4][5]. Particularly its one atom thickness, high charge mobility and high surface-to-volume ratio make it eligible for very sensitive sensing applications [6][7].…”
Section: Introductionmentioning
confidence: 99%