2018
DOI: 10.1088/1367-2630/aadcc1
|View full text |Cite
|
Sign up to set email alerts
|

Realistic shortcuts to adiabaticity in optical transfer

Abstract: Shortcuts to adiabaticity are techniques allowing rapid variation of the system Hamiltonian without inducing excess heating. Fast optical transfer of atoms between different locations is an important application of shortcuts to adiabaticity. We show that the common boundary conditions on the atomic position, which are imposed to find the driving trajectory, lead to highly non-practical boundary conditions for the optical trap. Our experimental results demonstrate that, as a result, previously suggested traject… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

5
33
0

Year Published

2019
2019
2020
2020

Publication Types

Select...
7

Relationship

1
6

Authors

Journals

citations
Cited by 32 publications
(38 citation statements)
references
References 52 publications
5
33
0
Order By: Relevance
“…(2) CD = 0, and the expression of H Couvert et al (2008) Fourier-based IE (Exp) Cold atoms in moving optical tweezers Masuda and Nakamura (2010) FF 1 particle in arbitrary trap Invariants, Compensating-force, Bang-bang 1 particle Chen et al (2011b) Invariants+OCT 1 particle harmonic transport Invariants+OCT BEC Sun et al (2012) Bang-bang (Exp) Load in a 2-D planar overhead mechanical crane Bowler et al (2012) Fourier transform (Exp) 1, 2 or 9 ions in Paul trap Optimized drivings (Exp) 1 or 2 ions in Paul trap Unitary transformations 1 particle in harmonic trap Palmero et al (2013) Invariants 2 ions in anharmonic traps Stefanatos and Li (2014) OCT 1 particle Lu et al (2014d) Invariants+Perturbation theory+OCT 1 ion Fürst et al (2014) OCT+Compensating force 1 ion in Paul trap Palmero et al (2014) Invariants Mixed-species ion chains in Paul trap Guéry-Odelin and Muga (2014) Fourier method 1 particle or BEC Pedregosa-Gutierrez et al (2015) Numerical simulations Large ion clouds Invariants 2 ions of different mass Zhang et al (2015b) Inverse engineering 1 particle in anharmonic trap Kamsap et al (2015) Numerical simulations Large ions clouds Martínez-Garaot et al (2015a) FAQUAD, Compensating-force 1 particle Alonso et al (2016) Bang-bang (Exp) 1 ion Invariants+OCT Cold atoms Okuyama and Takahashi (2016) Inverse engineering BECs in atom chips Kaufmann et al (2018) Invariants (Exp) 1 ion in Paul trap Lu et al (2018) Invariants 1 ion OCT+Compensating-force 1 ion in Paul trap Ness et al (2018) Invariants (Exp) Cold atoms in optical dipole trap Inverse engineering Spin-orbit-coupled BECs Li et al (2018b) Inverse engineering Qubit in double quantum dots Amri et al (2018) OCT & STA BECs in atom chips Richerme et al (2013) 14 spins in linear trap (Ising model) Adiabatic quantum simulation Local adiabatic Zhang et al (2013a) NV center in diamond Assisted adiabatic passage CD and accelerated CD 2 ions Separation Implement a function for equilibrium distance Kamsap et al (2015) Large ion clouds Transport Numerical simulations Rohringer et al (2015) 1D BEC Expansion/Compression Scaling Alonso et al (2016) Trapped ion Transport Bang-bang Du et al (2...…”
Section: Appendix B: Example Of Lie Transformmentioning
confidence: 99%
“…(2) CD = 0, and the expression of H Couvert et al (2008) Fourier-based IE (Exp) Cold atoms in moving optical tweezers Masuda and Nakamura (2010) FF 1 particle in arbitrary trap Invariants, Compensating-force, Bang-bang 1 particle Chen et al (2011b) Invariants+OCT 1 particle harmonic transport Invariants+OCT BEC Sun et al (2012) Bang-bang (Exp) Load in a 2-D planar overhead mechanical crane Bowler et al (2012) Fourier transform (Exp) 1, 2 or 9 ions in Paul trap Optimized drivings (Exp) 1 or 2 ions in Paul trap Unitary transformations 1 particle in harmonic trap Palmero et al (2013) Invariants 2 ions in anharmonic traps Stefanatos and Li (2014) OCT 1 particle Lu et al (2014d) Invariants+Perturbation theory+OCT 1 ion Fürst et al (2014) OCT+Compensating force 1 ion in Paul trap Palmero et al (2014) Invariants Mixed-species ion chains in Paul trap Guéry-Odelin and Muga (2014) Fourier method 1 particle or BEC Pedregosa-Gutierrez et al (2015) Numerical simulations Large ion clouds Invariants 2 ions of different mass Zhang et al (2015b) Inverse engineering 1 particle in anharmonic trap Kamsap et al (2015) Numerical simulations Large ions clouds Martínez-Garaot et al (2015a) FAQUAD, Compensating-force 1 particle Alonso et al (2016) Bang-bang (Exp) 1 ion Invariants+OCT Cold atoms Okuyama and Takahashi (2016) Inverse engineering BECs in atom chips Kaufmann et al (2018) Invariants (Exp) 1 ion in Paul trap Lu et al (2018) Invariants 1 ion OCT+Compensating-force 1 ion in Paul trap Ness et al (2018) Invariants (Exp) Cold atoms in optical dipole trap Inverse engineering Spin-orbit-coupled BECs Li et al (2018b) Inverse engineering Qubit in double quantum dots Amri et al (2018) OCT & STA BECs in atom chips Richerme et al (2013) 14 spins in linear trap (Ising model) Adiabatic quantum simulation Local adiabatic Zhang et al (2013a) NV center in diamond Assisted adiabatic passage CD and accelerated CD 2 ions Separation Implement a function for equilibrium distance Kamsap et al (2015) Large ion clouds Transport Numerical simulations Rohringer et al (2015) 1D BEC Expansion/Compression Scaling Alonso et al (2016) Trapped ion Transport Bang-bang Du et al (2...…”
Section: Appendix B: Example Of Lie Transformmentioning
confidence: 99%
“…It should be mentioned here that OCT and STA are usually compatible in the sense that an OCT methodology can be built on top of a basic STA frame of solutions 33,[37][38][39][40][41] . One can also note that recently, new methods have been tested successfully to bridge the gap between an ideal STA and a realistic experimental implementation for the optical transfer of a degenerate gas, demonstrating fast highly non-adiabatic transfer with almost no residual sloshing using corrected STA trajectories 42 .…”
Section: Introductionmentioning
confidence: 99%
“…Specifically, we propose to measure the temperature of an ultracold Fermi gas by observing the nonequilibrium dephasing dynamics of impurities immersed within it. We focus on a promising setup that has already been realized in the laboratory [53][54][55], where the gas atoms effectively interact only with the impurities and not with each other. In this setting, the Anderson orthogonality catastrophe (OC) [56,57] imprints characteristic signatures on the decoherence dynamics of the impurity [58][59][60][61], which can be observed using Ramsey interferometry [54,62,63].…”
mentioning
confidence: 99%