“…Our findings are also important for other eosinophilic skin diseases, several of which induce itch as a predominant symptom. Itchy papular eruptions have been described in the hypereosinophilic syndrome (HES) and can be successfully treated with ultraviolet (UV) therapy [35] . In prurigo nodularis, a disease defined solely by its itchiness, large deposits of eosinophil cationic protein (ECP) and EDN were detected by immunofluorescence.…”
Cutaneous nerves are increased in atopic dermatitis, and itch is a prominent symptom. We studied the functional interactions between eosinophils and nerves in human and mouse skin and in culture. We demonstrated that human atopic dermatitis skin has eosinophil granule proteins present in the same region as increased nerves. Transgenic mice in which interleukin-5 (IL-5) expression is driven by a keratin-14 (K14) promoter had many eosinophils in the epidermis, and the number of nerves was also significantly increased in the epidermis. In co-cultures, eosinophils dramatically increased branching of sensory neurons isolated from the dorsal root ganglia (DRG) of mice. This effect did not occur in DRG neurons co-cultured with mast cells or with dead eosinophils. Physical contact of the eosinophils with the neurons was not required, and the effect was not blocked by an antibody to nerve growth factor. DRG neurons express eotaxin-1, ICAM-1 and VCAM-1, which may be important in the recruitment, binding, and activation of eosinophils in the region of cutaneous nerves. These data indicate a pathophysiological role for eosinophils in cutaneous nerve growth in atopic dermatitis, and suggest they may present a therapeutic target in atopic dermatitis and other eosinophilic skin conditions with neuronal symptoms such as itch.
“…Our findings are also important for other eosinophilic skin diseases, several of which induce itch as a predominant symptom. Itchy papular eruptions have been described in the hypereosinophilic syndrome (HES) and can be successfully treated with ultraviolet (UV) therapy [35] . In prurigo nodularis, a disease defined solely by its itchiness, large deposits of eosinophil cationic protein (ECP) and EDN were detected by immunofluorescence.…”
Cutaneous nerves are increased in atopic dermatitis, and itch is a prominent symptom. We studied the functional interactions between eosinophils and nerves in human and mouse skin and in culture. We demonstrated that human atopic dermatitis skin has eosinophil granule proteins present in the same region as increased nerves. Transgenic mice in which interleukin-5 (IL-5) expression is driven by a keratin-14 (K14) promoter had many eosinophils in the epidermis, and the number of nerves was also significantly increased in the epidermis. In co-cultures, eosinophils dramatically increased branching of sensory neurons isolated from the dorsal root ganglia (DRG) of mice. This effect did not occur in DRG neurons co-cultured with mast cells or with dead eosinophils. Physical contact of the eosinophils with the neurons was not required, and the effect was not blocked by an antibody to nerve growth factor. DRG neurons express eotaxin-1, ICAM-1 and VCAM-1, which may be important in the recruitment, binding, and activation of eosinophils in the region of cutaneous nerves. These data indicate a pathophysiological role for eosinophils in cutaneous nerve growth in atopic dermatitis, and suggest they may present a therapeutic target in atopic dermatitis and other eosinophilic skin conditions with neuronal symptoms such as itch.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.