2008
DOI: 10.1016/j.ijhydene.2007.09.049
|View full text |Cite
|
Sign up to set email alerts
|

Process performance evaluation of intermittent–continuous stirred tank reactor for anaerobic hydrogen fermentation with kitchen waste

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2

Citation Types

0
20
0

Year Published

2008
2008
2021
2021

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 56 publications
(21 citation statements)
references
References 16 publications
0
20
0
Order By: Relevance
“…Single-phase hydrogen/methane fermentation Food waste, fruit-vegetable waste, dewatered sewage sludge n.a n.a n.a 2.33 m 3 m À 3 d À 1 0.39 m 3 kg À 1 VS CSTR [30] Food waste n.a n.a n.a 72 mL g À 1 VSS inoculum d 940 mL g À 1 VSS sub Batch reactor [88] Vegetable waste n.a n.a n.a Canteen based composite food waste 69.95 mmol Anaerobic SBR n.a n.a n.a [31] Vegetable waste 2.56 mL-H 2 h À 1 85.65 mL-H 2 g À 1 VS Batch reactor n.a n.a n.a [59] Municipal food waste, kitchen wastewater 6.0 7 0.5 L-H 2 d À 1 245 mL g-COD À 1 Anaerobic baffled reactor n.a n.a n.a [34] Municipal food waste n.a 370 mL-H 2 g À 1 VS Anaerobic baffled reactor n.a n.a n.a [33] Vegetable kitchen waste 1.0 L-H 2 L À 1 d À 1 1.7 mmol g-COD À 1 I-CSTR n.a n.a n.a [25] Kitchen wasteþ white rice 1.6 L-H 2 L À 1 d À 1 1.27 7 0.51 mmol g-COD À 1 I-CSTR n.a n.a n.a [26] Kitchen waste 60 l-H 2 L À 1 d À 1 1.2 mmol g-COD À 1 I-CSTR n.a n.a n.a [28] Kitchen waste -72 mL g À 1 VS Inclined plug flow reactor n.a n.a n.a [19] Starch-rich kitchen waste 2.2 L-H 2 L À 1 d À 1 2.1 mmol g-COD À 1 I-CSTR n.a n.a n.a [27] Vegetable kitchen waste 0.48 mmol-H 2 g À 1 VSS h À 1 0.57 mmol g-COD À 1 Batch reactor n.a n.a n.a [38] Two-phase hydrogen and methane fermentation Food waste 10.4 L-biogas L À 1 d À 1 (52-56% H 2 ) 205 mL g À 1 VS added CSTR 4.7 L-biogas L À 1 d À 1 (70-80% CH 4 ) 464 mL g À 1 VS Fluidized reactor [23] Food waste 11.1 L L À 1 -fed d À 1 2.5 mol mol À 1 hexose CSTR 47.4 L L À 1 -fed d À 1 287 mL g-COD À 1 Biogas sparging reactor [21] Potato waste 2.1 L L À 1 d À 1 85 mL g tank reactor (I-CSTR), operated in fill-and-draw mode has been widely documented. A hydrogen production rate of 1.0 L-H 2 L À 1 d À 1 and a yield of 1.7 mmol-H 2 g-COD À 1 was achieved upon digesting vegetable kitchen waste in I-CSTR [25].…”
Section: Referencementioning
confidence: 99%
See 1 more Smart Citation
“…Single-phase hydrogen/methane fermentation Food waste, fruit-vegetable waste, dewatered sewage sludge n.a n.a n.a 2.33 m 3 m À 3 d À 1 0.39 m 3 kg À 1 VS CSTR [30] Food waste n.a n.a n.a 72 mL g À 1 VSS inoculum d 940 mL g À 1 VSS sub Batch reactor [88] Vegetable waste n.a n.a n.a Canteen based composite food waste 69.95 mmol Anaerobic SBR n.a n.a n.a [31] Vegetable waste 2.56 mL-H 2 h À 1 85.65 mL-H 2 g À 1 VS Batch reactor n.a n.a n.a [59] Municipal food waste, kitchen wastewater 6.0 7 0.5 L-H 2 d À 1 245 mL g-COD À 1 Anaerobic baffled reactor n.a n.a n.a [34] Municipal food waste n.a 370 mL-H 2 g À 1 VS Anaerobic baffled reactor n.a n.a n.a [33] Vegetable kitchen waste 1.0 L-H 2 L À 1 d À 1 1.7 mmol g-COD À 1 I-CSTR n.a n.a n.a [25] Kitchen wasteþ white rice 1.6 L-H 2 L À 1 d À 1 1.27 7 0.51 mmol g-COD À 1 I-CSTR n.a n.a n.a [26] Kitchen waste 60 l-H 2 L À 1 d À 1 1.2 mmol g-COD À 1 I-CSTR n.a n.a n.a [28] Kitchen waste -72 mL g À 1 VS Inclined plug flow reactor n.a n.a n.a [19] Starch-rich kitchen waste 2.2 L-H 2 L À 1 d À 1 2.1 mmol g-COD À 1 I-CSTR n.a n.a n.a [27] Vegetable kitchen waste 0.48 mmol-H 2 g À 1 VSS h À 1 0.57 mmol g-COD À 1 Batch reactor n.a n.a n.a [38] Two-phase hydrogen and methane fermentation Food waste 10.4 L-biogas L À 1 d À 1 (52-56% H 2 ) 205 mL g À 1 VS added CSTR 4.7 L-biogas L À 1 d À 1 (70-80% CH 4 ) 464 mL g À 1 VS Fluidized reactor [23] Food waste 11.1 L L À 1 -fed d À 1 2.5 mol mol À 1 hexose CSTR 47.4 L L À 1 -fed d À 1 287 mL g-COD À 1 Biogas sparging reactor [21] Potato waste 2.1 L L À 1 d À 1 85 mL g tank reactor (I-CSTR), operated in fill-and-draw mode has been widely documented. A hydrogen production rate of 1.0 L-H 2 L À 1 d À 1 and a yield of 1.7 mmol-H 2 g-COD À 1 was achieved upon digesting vegetable kitchen waste in I-CSTR [25].…”
Section: Referencementioning
confidence: 99%
“…In another study, the use of starch-rich kitchen waste as a feedstock in an I-CSTR resulted in an average production rate of 2.2 L-H 2 L À 1 d À 1 and a maximum yield of 2.1 mmol-H 2 g-COD À 1 [27]. Yet another study on hydrogen production from kitchen waste-corn starch mixture using a similar type of reactor reported a production rate of 2.9 L-H 2 L À 1 d À 1 [28]. Stirred tank reactor (STR) operated in batch mode has also been explored and found feasible for hydrogen production [29].…”
Section: Referencementioning
confidence: 99%
“…Most of the dark fermentation studies were done in batch culture using different substrate and anaerobic cultures [13,17,19,20,[26][27][28][29]. Some recent studies utilized continuous culture for bio-hydrogen production from different substrates [7,9,18].…”
Section: Introductionmentioning
confidence: 99%
“…Shin et al, (2004) observed hydrogen production batch reactors using a mesophilic and thermophilic inocula from laboratory scale acidogenic reactor incubated at 37 or 55 ºC (Shin et al, 2004). Hydrogen production has also been observed from semicontinuous reactors using inocula from anaerobic digesters (Shin and Youn, 2005;Kim et al, 2008) or a pilot scale acidogenic reactor (Li et al, 2008). Kim et al (2008) also used heat treatment to supress methanogenic activity.…”
Section: Introductionmentioning
confidence: 99%