Search citation statements
Paper Sections
Citation Types
Publication Types
Relationship
Authors
Journals
Η μοντελοποίηση δυναμικών κοινωνικών διαδικασιών που λαμβάνουν χώρα στο διαδίκτυο αποτελεί ένα απαιτητικό εγχείρημα για τους παρακάτω λόγους: Πρώτον, τα πρόσωπα που αλληλεπιδρούν είναι ετερογενή και το καθένα ξεχωριστά αποτελεί ένα πολύπλοκο σύστημα. Δεύτερον, οι αλληλεπιδράσεις μεταξύ χρηστών επηρεάζονται από θόρυβο και τυχαιότητα, ενώ παράλληλα το δίκτυο των διαπροσωπικών επικοινωνιών είναι εξαιρετικά πολύπλοκο. Τρίτον, τα κοινωνικά συστήματα δεν βρίσκονται σε κατάσταση ισορροπίας καθώς η δυναμική τους επηρεάζεται από εξωτερικές διαταραχές των οποίων η κατανομή, συσχέτιση με ένα κοινωνικό σύστημα, καθώς και η μη στασιμότητά τους, είναι δύσκολο να καθοριστούν και να συμπεριληφθούν σ’ ένα δυναμικό κοινωνικό μοντέλο. Η επιτυχής μοντελοποίηση της online κοινωνικής μετάδοσης απαιτεί μια προσέγγιση ικανή να ανταπεξέλθει στις παραπάνω προκλήσεις. Γι’ αυτό το σκοπό αναπτύσσω και εφαρμόζω ένα πλαίσιο υλοποίησης βασισμένο στην θεωρία των πολύπλοκων προσαρμοστικών συστημάτων}. Μέσω μια τέτοιας μεθοδολογίας μπορεί να μελετηθεί η δυναμική φύση των αλληλεπιδράσεων μεταξύ χρηστών καθώς και οι μακροσκοπικές ιδιότητες της δραστηριότητας τους υπό την παρουσία εξωτερικών επιρροών. Ένα εξαιρετικά σύνθετο πολύπλοκο προσαρμοστικό σύστημα είναι αυτό του ανθρώπινου εγκεφάλου. Τα κοινωνικά δίκτυα είναι ακόμα πιο πολύπλοκα καθώς ουσιαστικά αποτελούνται από διασυνδεδεμένους εγκεφάλους. Ως αποτέλεσμα η μοντελοποίηση δυναμικών διαδικασιών που λαμβάνουν χώρα στα online κοινωνικά δίκτυα αποτελεί ένα υπερβολικά περίπλοκο έργο. Για την αντιμετώπιση των προκλήσεων μιας τέτοιας προσπάθειας εξετάζω τις online κοινωνικές διεργασίες μέσα από την προοπτική της νευροεπιστήμης θεωρώντας τη δυναμική των online κοινωνικών δικτύων ανάλογη με την δυναμική δικτύων αποτελούμενων από νευρώνες ολοκλήρωσης και πυροδότησης. Μέσω αυτού του ισομορφισμού εισάγω ένα νέο μοντέλο για την online κοινωνική μετάδοση το οποίο βασίζεται σε τρεις πηγές θετικής ή αρνητικής επιρροής: Την αυτοπαραγόμενη, τη διαπροσωπική και την εξωτερική. Το προτεινόμενο μοντέλο εξηγεί την ανάπτυξη της online δραστηριότητας καθώς και τις μορφές μετάδοσής της σε συνάρτηση με το δίκτυο των αλληλεπιδράσεων, την ενδογενή και εξωγενή επιρροή καθώς και τον μηχανισμό ενεργοποίησης των χρηστών. Μέσω πειραμάτων εξομοίωσης και ελέγχων εγκυρότητας των παραγόμενων αποτελεσμάτων μετά από σύγκριση με πραγματικά δεδομένα από το κοινωνικό δίκτυο Twitter, δείχνω ότι το μοντέλο αναπαράγει με ακρίβεια πρότυπα συλλογικής δραστηριότητας προερχόμενα από την απόκριση των χρηστών σε διαφόρων μορφών ερεθίσματα. Η συγκριτική αξιολόγηση των επιδόσεων του προτεινόμενου μοντέλου σε συνάρτηση με αυτή μοντέλων αναφοράς δείχνει ότι αυτό υπερτερεί σημαντικά στην ακρίβεια αναπαραγωγής πραγματικών προτύπων online δραστηριότητας. Μια ακόμα διαδικασία online κοινωνικής μετάδοσης την οποία μοντελοποιώ με καινοτόμο τρόπο σε αυτή τη Διδακτορική Διατριβή αφορά στη μετάδοση online πληροφορίας. Τη δυναμική αυτής της διαδικασίας την αναπαράγω μέσω ενός δικτυακού δυναμικού συστήματος αποτελούμενο από νευρώνες ολοκλήρωσης και πυροδότησης με θορυβώδη εισροή πληροφορίας. Μέσω του συνδυασμού ντετερμινιστικών και στοχαστικών συνιστωσών το προτεινόμενο μοντέλο αναπαράγει με ακρίβεια τα πρότυπα μετάδοσης online πληροφορίας, υποδηλώνοντας ότι αυτά εξαρτώνται από την χρονική δομή, ισχύ, καθώς και το λόγο σήματος-θορύβου των ερεθισμάτων που επηρεάζουν τους διασυνδεδεμένους χρήστες. Ο προτεινόμενος μηχανισμός ενσωματώνει τις έννοιες της ``απλής'' και ``πολύπλοκης'' μετάδοσης και επεκτείνει τις υπάρχουσες προσεγγίσεις καθώς συμπεριλαμβάνει σε ένα ενιαίο μοντέλο ενδογενείς και εξωγενείς, θετικές και αρνητικές, ντετερμινιστικές και στοχαστικές πηγές επιρροής. Τα προτεινόμενα μοντέλα νευρωνικών δικτύων είναι εύκολα προσαρμόσιμα και κατάλληλα για τη μελέτη ενός μεγάλου αριθμού από online και offline κοινωνικές δυναμικές διαδικασίες που αφορούν στη διάδοση συμπεριφορών, τάσεων και φημών, καθώς και στη διάχυση και προώθηση νέων προϊόντων. Τελικά, τη γνώση που προέκυψε από την μοντελοποίηση των προτύπων της online κοινωνικής δραστηριότητας την αξιοποιώ περαιτέρω με την ανάπτυξη ενός προβλεπτικού μοντέλου ικανού να παράγει ακριβείς προβλέψεις σχετικά με τη διάδοση online περιεχομένου.
Η μοντελοποίηση δυναμικών κοινωνικών διαδικασιών που λαμβάνουν χώρα στο διαδίκτυο αποτελεί ένα απαιτητικό εγχείρημα για τους παρακάτω λόγους: Πρώτον, τα πρόσωπα που αλληλεπιδρούν είναι ετερογενή και το καθένα ξεχωριστά αποτελεί ένα πολύπλοκο σύστημα. Δεύτερον, οι αλληλεπιδράσεις μεταξύ χρηστών επηρεάζονται από θόρυβο και τυχαιότητα, ενώ παράλληλα το δίκτυο των διαπροσωπικών επικοινωνιών είναι εξαιρετικά πολύπλοκο. Τρίτον, τα κοινωνικά συστήματα δεν βρίσκονται σε κατάσταση ισορροπίας καθώς η δυναμική τους επηρεάζεται από εξωτερικές διαταραχές των οποίων η κατανομή, συσχέτιση με ένα κοινωνικό σύστημα, καθώς και η μη στασιμότητά τους, είναι δύσκολο να καθοριστούν και να συμπεριληφθούν σ’ ένα δυναμικό κοινωνικό μοντέλο. Η επιτυχής μοντελοποίηση της online κοινωνικής μετάδοσης απαιτεί μια προσέγγιση ικανή να ανταπεξέλθει στις παραπάνω προκλήσεις. Γι’ αυτό το σκοπό αναπτύσσω και εφαρμόζω ένα πλαίσιο υλοποίησης βασισμένο στην θεωρία των πολύπλοκων προσαρμοστικών συστημάτων}. Μέσω μια τέτοιας μεθοδολογίας μπορεί να μελετηθεί η δυναμική φύση των αλληλεπιδράσεων μεταξύ χρηστών καθώς και οι μακροσκοπικές ιδιότητες της δραστηριότητας τους υπό την παρουσία εξωτερικών επιρροών. Ένα εξαιρετικά σύνθετο πολύπλοκο προσαρμοστικό σύστημα είναι αυτό του ανθρώπινου εγκεφάλου. Τα κοινωνικά δίκτυα είναι ακόμα πιο πολύπλοκα καθώς ουσιαστικά αποτελούνται από διασυνδεδεμένους εγκεφάλους. Ως αποτέλεσμα η μοντελοποίηση δυναμικών διαδικασιών που λαμβάνουν χώρα στα online κοινωνικά δίκτυα αποτελεί ένα υπερβολικά περίπλοκο έργο. Για την αντιμετώπιση των προκλήσεων μιας τέτοιας προσπάθειας εξετάζω τις online κοινωνικές διεργασίες μέσα από την προοπτική της νευροεπιστήμης θεωρώντας τη δυναμική των online κοινωνικών δικτύων ανάλογη με την δυναμική δικτύων αποτελούμενων από νευρώνες ολοκλήρωσης και πυροδότησης. Μέσω αυτού του ισομορφισμού εισάγω ένα νέο μοντέλο για την online κοινωνική μετάδοση το οποίο βασίζεται σε τρεις πηγές θετικής ή αρνητικής επιρροής: Την αυτοπαραγόμενη, τη διαπροσωπική και την εξωτερική. Το προτεινόμενο μοντέλο εξηγεί την ανάπτυξη της online δραστηριότητας καθώς και τις μορφές μετάδοσής της σε συνάρτηση με το δίκτυο των αλληλεπιδράσεων, την ενδογενή και εξωγενή επιρροή καθώς και τον μηχανισμό ενεργοποίησης των χρηστών. Μέσω πειραμάτων εξομοίωσης και ελέγχων εγκυρότητας των παραγόμενων αποτελεσμάτων μετά από σύγκριση με πραγματικά δεδομένα από το κοινωνικό δίκτυο Twitter, δείχνω ότι το μοντέλο αναπαράγει με ακρίβεια πρότυπα συλλογικής δραστηριότητας προερχόμενα από την απόκριση των χρηστών σε διαφόρων μορφών ερεθίσματα. Η συγκριτική αξιολόγηση των επιδόσεων του προτεινόμενου μοντέλου σε συνάρτηση με αυτή μοντέλων αναφοράς δείχνει ότι αυτό υπερτερεί σημαντικά στην ακρίβεια αναπαραγωγής πραγματικών προτύπων online δραστηριότητας. Μια ακόμα διαδικασία online κοινωνικής μετάδοσης την οποία μοντελοποιώ με καινοτόμο τρόπο σε αυτή τη Διδακτορική Διατριβή αφορά στη μετάδοση online πληροφορίας. Τη δυναμική αυτής της διαδικασίας την αναπαράγω μέσω ενός δικτυακού δυναμικού συστήματος αποτελούμενο από νευρώνες ολοκλήρωσης και πυροδότησης με θορυβώδη εισροή πληροφορίας. Μέσω του συνδυασμού ντετερμινιστικών και στοχαστικών συνιστωσών το προτεινόμενο μοντέλο αναπαράγει με ακρίβεια τα πρότυπα μετάδοσης online πληροφορίας, υποδηλώνοντας ότι αυτά εξαρτώνται από την χρονική δομή, ισχύ, καθώς και το λόγο σήματος-θορύβου των ερεθισμάτων που επηρεάζουν τους διασυνδεδεμένους χρήστες. Ο προτεινόμενος μηχανισμός ενσωματώνει τις έννοιες της ``απλής'' και ``πολύπλοκης'' μετάδοσης και επεκτείνει τις υπάρχουσες προσεγγίσεις καθώς συμπεριλαμβάνει σε ένα ενιαίο μοντέλο ενδογενείς και εξωγενείς, θετικές και αρνητικές, ντετερμινιστικές και στοχαστικές πηγές επιρροής. Τα προτεινόμενα μοντέλα νευρωνικών δικτύων είναι εύκολα προσαρμόσιμα και κατάλληλα για τη μελέτη ενός μεγάλου αριθμού από online και offline κοινωνικές δυναμικές διαδικασίες που αφορούν στη διάδοση συμπεριφορών, τάσεων και φημών, καθώς και στη διάχυση και προώθηση νέων προϊόντων. Τελικά, τη γνώση που προέκυψε από την μοντελοποίηση των προτύπων της online κοινωνικής δραστηριότητας την αξιοποιώ περαιτέρω με την ανάπτυξη ενός προβλεπτικού μοντέλου ικανού να παράγει ακριβείς προβλέψεις σχετικά με τη διάδοση online περιεχομένου.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers