2023
DOI: 10.1016/j.scriptamat.2022.115072
|View full text |Cite
|
Sign up to set email alerts
|

Preparation of an overall intergranular fracture surface caused by hydrogen and identification of lattice defects present in the local area just below the surface of tempered martensitic steel

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
1
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
7

Relationship

3
4

Authors

Journals

citations
Cited by 10 publications
(4 citation statements)
references
References 37 publications
0
1
0
Order By: Relevance
“…Koyama et al 32) observed some plasticity-related IG fracture cracks in detail and reported that the cracks on the prior B grain boundaries were discontinuous and that nanovoid linkages formed tear ridges on the grain boundaries. Chiba et al 5 prepared full intergranular fracture surfaces of tempered martensitic steel charged with hydrogen and analyzed the lattice defects using low-As shown in Fig. 8, several rows of microvoids were observed between adjacent cracks parallel to the plane of maximum shear stress.…”
Section: Discussionmentioning
confidence: 99%
See 1 more Smart Citation
“…Koyama et al 32) observed some plasticity-related IG fracture cracks in detail and reported that the cracks on the prior B grain boundaries were discontinuous and that nanovoid linkages formed tear ridges on the grain boundaries. Chiba et al 5 prepared full intergranular fracture surfaces of tempered martensitic steel charged with hydrogen and analyzed the lattice defects using low-As shown in Fig. 8, several rows of microvoids were observed between adjacent cracks parallel to the plane of maximum shear stress.…”
Section: Discussionmentioning
confidence: 99%
“…Concern about hydrogen embrittlement caused by a slight amount of hydrogen absorbed through atmospheric corrosion 1) has grown in recent years with the increase in steel strength. Intergranular (IG) fractures [2][3][4][5] , i.e., crack propagation along prior austenite (B) grain boundaries, and quasicleavage (QC) fractures [6][7][8][9][10][11][12][13] , i.e., crack propagation in prior B grains, have been reported as typical fracture morphologies induced by hydrogen embrittlement of martensitic steels. It has been suggested that the mechanism of hydrogen embrittlement fracture causing these two fracture morphologies differs.…”
Section: Introductionmentioning
confidence: 99%
“…However, hydrogen embrittlement susceptibility increases with increasing strength of steels, and a lathmartensitic steel is particularly susceptible to hydrogen embrittlement [1][2][3][4][5] . Typical fracture morphologies are intergranular (IG) fracture along prior austenite (γ) grain boundaries [6][7][8][9] and quasi-cleavage (QC) fracture [9][10][11][12][13][14][15][16] that occurs along the block/lath boundary or {011} slip plane of the body-centered cubic lattice, and each fracture mechanism may be different. The most important issue is to identify the crack initiation sites and clarify the main factor involved in order to elucidate the mechanism of each fracture mode.…”
Section: Introductionmentioning
confidence: 99%
“…)粒界に沿って進展する粒界(Interngranular: IG)破壊[2][3][4][5] と旧オーステナイト粒内を進展する擬へき開(Quasi-qleavage: QC)破壊[6][7][8][9][10][11][12][13] および切欠き先端での局所塑性変 形領域でき裂発生するひずみ支配型の QC 破壊に分類される14) 。Wang らは環状切欠きを 付与した引張強さ 1450 MPa 級の AISI4135 鋼に対して水素添加後の低ひずみ速度引張試験 (Slow strain rate technique: SSRT)と有限要素法(Finite element method: FEM)による弾塑 性解析を用いて,主応力と局所水素量の最大となる切欠き先端から僅かに離れた位置で粒 界に沿ったき裂が発生する応力支配型の IG 破壊が起きると報告している 15) 。さらに,ボ ロン添加焼戻しマルテンサイト鋼の SSRT において,侵入水素量の低下に伴い破壊形態が IG 破壊から QC 破壊へ変化することを報告している 16) しかし,大気暴露された引張強さ 1300 MPa 級の焼戻しマルテンサイト鋼のボルトが 16 年後に遅れ破壊した破面を観察した結果,き裂発生点はねじ底近傍の一か所からでなく複 数か所から発生し,これらのき裂は破面上に段差を伴い互いに連結して進展した可能性が 報告されている 17) 。応力負荷状態の焼戻しマルテンサイト鋼を大気暴露することで吸蔵さ れる拡散性水素量は,最大で約 0.2 mass ppm(以下,ppm と省略)程度であると報告され ている 18) 。したがって,大気腐食で吸蔵されるレベルの低水素量 1), 18) におけるき裂発生と 3 mass% C(以下,%), 0.28% Si, 0.80% Mn, 0.008% P, 0.006% S の中炭 素鋼を用いた。焼入れ温度 960 °C,焼戻し温度 350 °C で高周波焼入れ焼戻しを施して,引 張強さ 1474 MPa の焼戻しマルテンサイト鋼とした。Fig. 1 に示す引張試験片を準備した。 長さ 140 mm の丸棒中央部に直径 5 mm,長さ 30 mm の平行部を導入し,旋盤加工でその 中央に応力集中係数 Kt=2.8 の環状切欠きを導入 20) した。試験片の切欠き付近を引張軸方 向と平行に切断した。試験片の表面を#800~2000 のエメリー紙,3~9 µm のダイヤモンド サスペンション,0.03 µm のコロイダルシリカを用いて研磨した。さらに,材料組織の結晶 4 方位関係を調べるため,加速電圧 15 kV,ビームステップサイズ 50 nm,作動距離 17 mm で 電子後方散乱回折(Electron backscatter diffraction:EBSD)解析をした。金属組織を Fig.…”
unclassified