volume 116, issue 2, P229-243 1994
DOI: 10.1017/s0305004100072546
View full text
|
|
Share

Abstract: Let A be an artin algebra over a commutative artin ring R, mod A be the category of finitely generated right A-modules, and rad∞ (modA) be the infinite power of the Jacobson radical rad(modA) of modA. Recall that A is said to be representation-finite if mod A admits only finitely many non-isomorphic indecomposable modules. It is known that A is representation-finite if and only if rad∞ (mod A) = 0. Moreover, from the validity of the First Brauer–Thrall Conjecture [26, 2] we know that A is representation-finite…

expand abstract