2011
DOI: 10.1021/pr200861w
|View full text |Cite
|
Sign up to set email alerts
|

Mechanisms of Plant Salt Response: Insights from Proteomics

Abstract: Soil salinity is a major abiotic stress that limits plant growth and agriculture productivity. To cope with salt stress, plants have evolved complex salt-responsive signaling and metabolic processes at the cellular, organ, and whole-plant levels. Investigation of the physiological and molecular mechanisms underlying plant salinity tolerance will provide valuable information for effective engineering strategies. Current proteomics provides a high-throughput approach to study sophisticated molecular networks in … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

21
279
0
11

Year Published

2013
2013
2018
2018

Publication Types

Select...
4
3
1

Relationship

0
8

Authors

Journals

citations
Cited by 344 publications
(323 citation statements)
references
References 161 publications
21
279
0
11
Order By: Relevance
“…12B), photosynthesis-related genes involved in light harvesting, electron transfer, CO 2 assimilation, and additional mechanisms such as photosystem protein, light harvesting complex I/II binding proteins, Rubisco activase, and chlorophyll a/b-binding proteins are up-regulated and are presented as potential candidates in salt stress tolerance, as suggested by Walia et al (2007) in barley (Hordeum vulgare). Most of the photosynthesis-related genes are induced under salt stress in different species such as Arabidopsis, wheat (Triticum durum), rice, or grapevine (Vitus vinifera; for review, see Zhang et al, 2012). Different strategies can nevertheless be adopted by plants to modulate their growth under stress conditions.…”
Section: Slzf2 Modulates Salt Stress Responsementioning
confidence: 99%
“…12B), photosynthesis-related genes involved in light harvesting, electron transfer, CO 2 assimilation, and additional mechanisms such as photosystem protein, light harvesting complex I/II binding proteins, Rubisco activase, and chlorophyll a/b-binding proteins are up-regulated and are presented as potential candidates in salt stress tolerance, as suggested by Walia et al (2007) in barley (Hordeum vulgare). Most of the photosynthesis-related genes are induced under salt stress in different species such as Arabidopsis, wheat (Triticum durum), rice, or grapevine (Vitus vinifera; for review, see Zhang et al, 2012). Different strategies can nevertheless be adopted by plants to modulate their growth under stress conditions.…”
Section: Slzf2 Modulates Salt Stress Responsementioning
confidence: 99%
“…Proteomik sonuçlar, tuz stresine cevap ve tuza toleransın altında yatan fotosentetik işlevlerin anlaşılmasını önemli düzeyde arttırmıştır. Bu tuza-cevap proteinleri ışık reaksiyonu, CO 2 özümlemesi ve diğer fotosentezle ilişkili işlevlerin regülasyonunu kapsar [19].…”
Section: Fotosentez Ve Solunum Metabolizmasıunclassified
“…Bitkilerde ROT savunma sisteminde tuza cevapta proteinler/enzimlerin şematik gösterimi. 2-P-glikolat, 2-fosfoglikolat; 3-P-glikolat, 3-fosfoglikolat; AOX, alternatif oksidaz; APX, askorbat peroksidaz; CAT, katalaz; DHA, dehidroaskorbat; DHAR, dehidroaskorbat redüktaz; GLR, glutaredoksin; GOX, glikolat oksidaz; GPX, glutatyonperoksidaz; GR, glutatyon redüktaz; GLR, glutaredoksin; GOX, glikolat oksidaz; GPX, glutatyon peroksidaz; GR, glutatyon redüktaz; GSH, indirgenmiş glutatyon; GSSG, okside glutatyon; GST, glutatyon Stransferaz; MDA, monodehidroaskorbat; MDAR, monodehidroaskorbat redüktaz; NAD + /NADH, nikotinamid adenin dinükleotid; NADP + /NADPH, nikotinamid adenin dinükleotid fosfat; PGP, fosfoglikolat fosfotaz; PrxR, peroksiredoksin; RBOH, solunum oksidaz homologu (NADPH oksidaz); RuBisCO, ribuloz-1,5-bifosfat karboksilaz/oksijenaz; RuBP, ribuloz-1,5-bifosfat; SOD, superoksit dismutaz; Trx, tiyoredoksin (Zhang et al [19]'dan değiştirilerek).…”
Section: Rot'lara Karşı Savunma Sistemleriunclassified
See 1 more Smart Citation
“…Among these, salinity is one of the most critical abiotic stresses that adversely affect plant germination, growth and ultimately yield (Golldack et al, 2014). It has been estimated that 20% of cultivated lands are affected by soil salinity (Zhang et al, 2012). Furthermore, the salinized areas are increasing at a rate of 10% annually for various reasons, including low precipitation, high surface evaporation, weathering of native rocks, irrigation with saline water, and poor cultural practices.…”
Section: Introductionmentioning
confidence: 99%