PLoS ONE volume 9, issue 5, Pe98372 2014 DOI: 10.1371/journal.pone.0098372 View full text
|
|
Share
Raphy Zarecki, Matthew A. Oberhardt, Keren Yizhak, Allon Wagner, Ella Shtifman Segal, Shiri Freilich, Christopher S. Henry, Uri Gophna, Eytan Ruppin

Abstract: Growth rate has long been considered one of the most valuable phenotypes that can be measured in cells. Aside from being highly accessible and informative in laboratory cultures, maximal growth rate is often a prime determinant of cellular fitness, and predicting phenotypes that underlie fitness is key to both understanding and manipulating life. Despite this, current methods for predicting microbial fitness typically focus on yields [e.g., predictions of biomass yield using GEnome-scale metabolic Models (GEMs…

expand abstract