Summary
Although pathogens must infect differentiated host cells that exhibit substantial diversity, documenting the consequences of infection against this heterogeneity is challenging. Single cell mass cytometry permits deep profiling based on combinatorial expression of surface and intracellular proteins. We used this method to investigate varicella-zoster virus (VZV) infection of tonsil T cells, which mediate viral transport to skin. Our results indicate that VZV induces a continuum of changes regardless of basal phenotypic and functional T cell characteristics. Contrary to the premise that VZV selectively infects T cells with skin trafficking profiles, VZV infection altered T cell surface proteins to enhance or induce these properties. Zap70 and Akt signaling pathways that trigger such surface changes were activated in VZV-infected naïve and memory cells by a T cell receptor (TCR)-independent process. Single cell mass cytometry is likely to be broadly relevant for demonstrating how intracellular pathogens modulate differentiated cells to support pathogenesis in the natural host.