2022
DOI: 10.48550/arxiv.2203.13655
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Gransformer: Transformer-based Graph Generation

Abstract: Transformers have become widely used in modern models for various tasks such as natural language processing and machine vision. This paper, proposes Gransformer, an algorithm for generating graphs that takes advantage of the transformer. We extend a simple autoregressive transformer encoder to exploit the structural information of the graph through efficient modifications. The attention mechanism is modified to consider the presence or absence of edges between each pair of nodes. We also introduce a graph-base… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 16 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?