2024
DOI: 10.20944/preprints202402.0280.v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

General Relativistic Hydrodynamics in Discrete Spacetime: Perfect Fluid Accretion onto Static and Spinning Black Holes

Jonathan Gorard

Abstract: We study the problem of a spherically-symmetric distribution of a perfect relativistic fluid accreting onto a (potentially spinning) black hole within a fully discrete spacetime setting. This problem has previously been studied extensively in the context of continuum spacetimes, beginning with the purely analytic work of Bondi in the spherically-symmetric Newtonian case, Michel in the spherically-symmetric general relativistic case, and Petrich, Shapiro and Teukolsky in the axially-symmetric general relativist… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 65 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?