2012
DOI: 10.17265/2159-5828/2012.05.001
|View full text |Cite
|
Sign up to set email alerts
|

Gelling Behavior of Plant Proteins and Polysaccharides in Food Systems

Abstract: Biological macromolecules, such as proteins and polysaccharides, are widely used in food systems because their interactions impart a desirable texture to food products. Plant proteins interact with food components via protein-protein and protein-polysaccharide associations, and the formation of a matrix, which can entrap other food components such as water, lipids and flavors. These networks provide structural integrity to food products and can serve as important functional ingredients in processed foods. Inte… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 54 publications
0
1
0
Order By: Relevance
“…Globular proteins can also be employed as gelling agents, because when heated, they unfold, exposing non-polar and sulfhydryl groups to the surrounding aqueous phase, causing aggregation via hydrophobic and disulfide bond formation [4]. Gelation occurs when the aggregated proteins arrange into an ordered matrix with a balance of proteinprotein and protein-solvent interactions, which are maintained by a balance of attracting and repelling forcible forces [37]. Albumins, globulins, glutelins, and prolamins may all form isotropic (e.g., yogurt-like) or anisotropic (e.g., fibrous structures) gels.…”
Section: Globular Proteinsmentioning
confidence: 99%
“…Globular proteins can also be employed as gelling agents, because when heated, they unfold, exposing non-polar and sulfhydryl groups to the surrounding aqueous phase, causing aggregation via hydrophobic and disulfide bond formation [4]. Gelation occurs when the aggregated proteins arrange into an ordered matrix with a balance of proteinprotein and protein-solvent interactions, which are maintained by a balance of attracting and repelling forcible forces [37]. Albumins, globulins, glutelins, and prolamins may all form isotropic (e.g., yogurt-like) or anisotropic (e.g., fibrous structures) gels.…”
Section: Globular Proteinsmentioning
confidence: 99%