Putative open reading frames (ORFs) encoding laminin-like proteins are found in all members of the genus Megalocytivirus, family Iridoviridae. This is the first study that identified the VP23R protein encoded by ORF23R of the infectious spleen and kidney necrosis virus (ISKNV), a member of these genes of megalocytiviruses. The VP23R mRNA covering the ISKNV genomic coordinates 19547 to 22273 was transcribed ahead of the major capsid protein. Immunofluorescence analysis demonstrated that VP23R was expressed on the plasma membrane of the ISKNV-infected cells and could not be a viral envelope protein. Residues 292 to 576 of VP23R are homologous to the laminin ␥1III2-6 fragment, which covers the nidogen-binding site. An immunoprecipitation assay showed that VP23R could interact with nidogen-1, and immunohistochemistry showed that nidogen-1 was localized on the outer membrane of the infected cells. Electron microscopy showed that a virus-mock basement membrane (VMBM) was formed on the surface of the infected cells and a layer of endothelial cells (ECs) was attached to the VMBM. The VMBM contained VP23R and nidogen-1 but not collagen IV. The attached ECs were identified as lymphatic endothelial cells (LECs), which have unique feature of overlapping intercellular junctions and can be stained by immunohistochemistry using an antibody against a specific lymphatic marker, Prox-1. Such infection signs have never been described in viruses. Elucidating the functions of LECs attached to the surface of the infected cells may be useful for studies on the pathogenic mechanisms of megalocytiviruses and may also be important for studies on lymphangiogenesis and basement membrane functions.Basement membrane (BM), a dense and sheetlike structure that is always associated with cells, is a very important specialized form of extracellular matrix (31, 67). BMs mediate tissue compartmentalization and provide structural support to the epithelium, endothelium, peripheral nerve axons, fat cells, and muscle cells, as well as structural and functional foundations of the vasculature (25,31,52). BM is also an important regulator of cell behaviors, such as adhesion, migration, proliferation, and differentiation. BMs are highly cross-linked and insoluble materials. They are highly complex and are made up of more than 50 known components (31, 54). Although the molecular composition of BMs is unique in each tissue, their basic structures are similar. Even if many more isoforms exist in different species, the major BM proteins and their receptors are conserved from Caenorhabditis elegans to mammals. BM consists of a layer of laminin polymer, a layer of type IV collagen network, and the nidogen protein, which acts as a crosslinker of these two networks. Other BM components, such as perlecan and fibulin, interact with the laminin polymer and the type IV collagen network to organize a functional BM on the basolateral aspect of the cells (31, 45, 52).The components of BM are able to self-assemble and form a sheetlike structure, and laminin is the key mol...