2017
DOI: 10.1152/jn.00409.2017
|View full text |Cite
|
Sign up to set email alerts
|

Extracellular H+ fluxes from tiger salamander Müller (glial) cells measured using self-referencing H+-selective microelectrodes

Abstract: Self-referencing H-selective electrodes were used to measure extracellular H fluxes from Müller (glial) cells isolated from the tiger salamander retina. A novel chamber enabled stable recordings using H-selective microelectrodes in a self-referencing format using bicarbonate-based buffer solutions. A small basal H flux was observed from the end foot region of quiescent cells bathed in 24 mM bicarbonate-based solutions, and increasing extracellular potassium induced a dose-dependent increase in H flux. Barium a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
10
0

Year Published

2018
2018
2024
2024

Publication Types

Select...
5

Relationship

2
3

Authors

Journals

citations
Cited by 6 publications
(10 citation statements)
references
References 37 publications
0
10
0
Order By: Relevance
“…The growing body of evidence supporting the presence of microdomains of glial cell modulation [ 1 , 2 ] suggests the possibility that glial cell-mediated changes in extracellular H+ could be highly localized and might modulate highly restricted and independent sets of synaptic connections. Support for the notion of independent calcium domains within tiger salamander Müller cells includes our own previous experiments examining the effects of intracellular calcium rises induced by high extracellular potassium [ 19 ]. When tiger salamander Müller cells were tested in the same conditions as used in the present experiments (HEPES as the extracellular pH buffer with no bicarbonate present), high extracellular potassium levels induced significant increases in intracellular calcium that did not lead to any significant alteration in extracellular H+ flux.…”
Section: Discussionmentioning
confidence: 88%
See 4 more Smart Citations
“…The growing body of evidence supporting the presence of microdomains of glial cell modulation [ 1 , 2 ] suggests the possibility that glial cell-mediated changes in extracellular H+ could be highly localized and might modulate highly restricted and independent sets of synaptic connections. Support for the notion of independent calcium domains within tiger salamander Müller cells includes our own previous experiments examining the effects of intracellular calcium rises induced by high extracellular potassium [ 19 ]. When tiger salamander Müller cells were tested in the same conditions as used in the present experiments (HEPES as the extracellular pH buffer with no bicarbonate present), high extracellular potassium levels induced significant increases in intracellular calcium that did not lead to any significant alteration in extracellular H+ flux.…”
Section: Discussionmentioning
confidence: 88%
“…We confirmed the lack of contribution from voltage-dependent sodium-bicarbonate exchange by examining the effects of high extracellular potassium on H+ fluxes. Depolarization of Müller cells with high extracellular potassium is known to activate the voltage-dependent sodium bicarbonate cotransporter and produce extracellular acidifications when bicarbonate is present, but not when bicarbonate is absent [ 19 , 30 , 31 ]. In our control experiments, application of 50 mM KCl failed to alter extracellular H+ flux: in 5 cells tested, a signal of 10 ± 3 μV was observed upon application of Ringer’s solution, and a signal of 18 ± 6 μV detected after addition of 50 mM KCl (p = 0.18, N = 5).…”
Section: Resultsmentioning
confidence: 99%
See 3 more Smart Citations