2021
DOI: 10.1021/acsami.0c22430
|View full text |Cite
|
Sign up to set email alerts
|

Expanded MoSe2 Nanosheets Vertically Bonded on Reduced Graphene Oxide for Sodium and Potassium-Ion Storage

Abstract: The cost-efficient and plentiful Na and K resources motivate the research on ideal electrodes for sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs). Here, MoSe2 nanosheets perpendicularly anchored on reduced graphene oxide (rGO) are studied as an electrode for SIBs and PIBs. Not only does the graphene network serves as a nucleation substrate for suppressing the agglomeration of MoSe2 nanosheets to eliminate the electrode fracture but also facilitates the electrochemical kinetics process and provid… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

5
79
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 97 publications
(85 citation statements)
references
References 46 publications
5
79
0
1
Order By: Relevance
“…12:K V 5 O 13 @reduced graphene (rGO)//V 2 O 3Àx @rGO, [55] Ref. 13:KFe[Fe-(CN) 6 ]//hard carbon, [50] Ref. 14:K 0.5 V 2 O 5 //Nb 2 O 5Àx @rGO [56] ).…”
Section: Discussionmentioning
confidence: 99%
See 3 more Smart Citations
“…12:K V 5 O 13 @reduced graphene (rGO)//V 2 O 3Àx @rGO, [55] Ref. 13:KFe[Fe-(CN) 6 ]//hard carbon, [50] Ref. 14:K 0.5 V 2 O 5 //Nb 2 O 5Àx @rGO [56] ).…”
Section: Discussionmentioning
confidence: 99%
“…[8,9] Recently, potassium-ion batteries (PIBs) have received tremendous interests owing to the low redox potential of K + /K in organic electrolyte (À2.93 Vversus standard hydrogen electrode), the abundance of potassium resources,t he weaker Lewis acidity of K + and the practicability of graphite anode. [10][11][12][13] Unfortunately,t he large ionic radius of K + (1.38 )c ould result in large voltage hysteresis and sluggish K + -diffusion kinetics. [14] Furthermore,t he large size of K + generally causes large volume change and high lattice strain during charge/discharge processes and thus deteriorates the cycling performance of host materials.…”
Section: Introductionmentioning
confidence: 99%
See 2 more Smart Citations
“…随着"碳中和、碳达峰"概念的提出,新能源的 重要性日益凸显。作为新能源中应用最广泛的一种, 锂离子电池已经广泛渗透进了人类的日常生活 [1][2] 。 然而,地球上锂资源的储量十分有限,且其分布的不 均匀性导致我国锂离子电池的发展十分容易受到 "卡 脖子"的风险。因此,寻求新型的低成本、资源丰富 的高性能二次电池体系以替代锂离子电池成为能源 可持续发展的关键。钠与锂属于同族元素,从而具有 很多相似的性质, 且钠在地球上储量丰富, 成本低廉, 因此, 钠离子电池已成为未来储能电池发展的重要方 向之一 [3][4][5] [6][7][8][9] 。因此,新型高容量、长循环 寿命的负极材料的研发尤为重要。近年来,碳材料、 合金材料、金属氧/硫/硒化物等均被广泛研究,其中 碳材料循环性能稳定但容量低 [10] ; 合金材料具有高的 理论容量,但存在巨大的体积膨胀 [11] ;金属氧化物理 论容量较高,但电导率较低 [12] 。理想的钠离子电池负 极材料需要满足高导电性、 较小的体积膨胀以及长循 环寿命等要求,因此,金属硫族化合物开始逐渐进入 人们的视野。 图 1 钠离子电池负极材料 [13][14][15][16][17][18] Figure 1 Anode materials of sodium ion batteries 金属硫族化合物包括金属硫化物与金属硒化物, 具有较大的层间距以及较高的理论容量, 因此被认为 是最有应用前景的钠离子电池负极材料。 而硒相比硫 具有更大的原子半径以及更强的金属性, 且金属硒化 物具有更窄的带隙和线宽, 因此具有更高的导电性以 及更大的层间距 [19][20] 。同时,金属硒化物在电化学脱 嵌钠过程中发生转化/合金型反应机理,从而表现出 很高的储钠容量。金属硒化物可以分为层状结构(包 括 MoSe2,SnSe,SnSe2,WSe2,TiSe2 等)及非层状 结构(包括 FeSe2,ZnSe,CoSe2,NiSe2 等) 。层状 结构金属硒化物通常是由金属原子 M 夹在两层硒 (Se)原子之间形成的三层结构(Se-M-Se) ,层间以 共价键相连,而每个结构之间则是以范德华力结合, 钠离子很容易在其中嵌入与脱出; 而非层状金属硒化 物大多可以从天然矿石中提出, 具有低成本以及高理 论容量的优势 [21][22] [26] ; (b) DR-MoSe2 和 DF-MoSe2 的 BET 测试 [27] ; (c) MoSe2-MoO3/C 的 HRTEM 图像 [28] ;(d) MoSe2@rGO 的微观键合,(e) Mo、C 元素分峰图 [29] 。 Figure 2 (a) The migration path of Na between and on the surface of MoS2 [26] ; (b) BET of DR-MoSe2 and DF-MoSe2 [27] ; (c) HRTEM image of MoSe2-MoO3/C [28] ; (d) Microscopic bonding of MoSe2@rGO, (e) XPS fitting curves of Mo and C elements [29] .…”
Section: 引言unclassified