2015
DOI: 10.1016/j.fgb.2015.02.002
|View full text |Cite
|
Sign up to set email alerts
|

Evolution of novel wood decay mechanisms in Agaricales revealed by the genome sequences of Fistulina hepatica and Cylindrobasidium torrendii

Abstract: Wood decay mechanisms in Agaricomycotina have been traditionally separated in two categories termed white and brown rot. Recently the accuracy of such a dichotomy has been questioned. Here, we present the genome sequences of the white rot fungus Cylindrobasidium torrendii and the brown rot fungus Fistulina hepatica both members of Agaricales, combining comparative genomics and wood decay experiments. Cylindrobasidium torrendii is closely related to the white-rot root pathogen Armillaria mellea, while F. hepati… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

5
129
0

Year Published

2015
2015
2020
2020

Publication Types

Select...
8
1
1

Relationship

1
9

Authors

Journals

citations
Cited by 142 publications
(134 citation statements)
references
References 112 publications
(142 reference statements)
5
129
0
Order By: Relevance
“…These GH43s are expanded in many wood-degrading fungi, including Schizophyllum commune (43). Up-regulation of hemicellulases and carbohydrate esterases implies that enzymatic hemicellulose hydrolysis is integral to brown rot, even though hemicellulase genes [including GH43s (44)] are less numerous and less diverse in brown rot fungi than in white rot fungi (11).…”
Section: Discussionmentioning
confidence: 99%
“…These GH43s are expanded in many wood-degrading fungi, including Schizophyllum commune (43). Up-regulation of hemicellulases and carbohydrate esterases implies that enzymatic hemicellulose hydrolysis is integral to brown rot, even though hemicellulase genes [including GH43s (44)] are less numerous and less diverse in brown rot fungi than in white rot fungi (11).…”
Section: Discussionmentioning
confidence: 99%
“…We have selected (a) 14 popular white rot fungal strains – Ceriporiopsis subvermispora B (Fernandez-Fueyo et al 2012), Heterobasidion annosum v2.0 (Olson et al 2012), Fomitiporia mediterranea v1.0 (Floudas et al 2012), Phanerochaete carnosa HHB-10118 (Suzuki et al 2012), Pycnoporus cinnabarinus BRFM 137 (Levasseur et al 2014), Phanerochaete chrysosporium R78 v2.2 (Martinez et al 2004; Ohm et al 2014), Dichomitus squalens LYAD-421 SS1 (Floudas et al 2012), Trametes versicolor v1.0 (Floudas et al 2012), Punctularia strigosozonata v1.0 (Floudas et al 2012), Phlebia brevispora HHB-7030 SS6 (Binder et al 2013), Botrytis cinerea v1.0 (Amselem et al 2011), Pleurotus ostreatus PC15 v2.0 (Riley et al 2014; Alfaro et al 2016; Castanera et al 2016), Stereum hirsutum FP-91666 SS1 v1.0 (Floudas et al 2012), Pleurotus eryngii ATCC90797 (Guillen et al 1992; Camarero et al 1999; Ruiz‐Dueñas et al 1999; Matheny et al 2006); (b) 15 popular brown rot fungal strains – Postia placenta MAD 698-R v1.0 (Martinez et al 2009), Fibroporia radiculosa TFFH 294 (Tang et al 2012), Wolfiporia cocos MD-104 SS10 v1.0 (Floudas et al 2012), Dacryopinax primogenitus DJM 731 SSP1 v1.0 (Floudas et al 2012), Daedalea quercina v1.0 (Nagy et al 2015), Laetiporus sulphureus var v1.0 (Nagy et al 2015), Postia placenta MAD-698-R-SB12 v1.0 (Martinez et al 2009), Neolentinus lepideus v1.0 (Nagy et al 2015), Serpula lacrymans S7.9 v2.0 (Eastwood et al 2011), Calocera cornea v1.0 (Eastwood et al 2011), Gloeophyllum trabeum v1.0 (Floudas et al 2012), Fistulina hepatica v1.0 (Floudas et al 2015), Fomitopsis pinicola FP-58527 SS1 (Floudas et al 2015), Hydnomerulius pinastri v2.0 (Kohler et al 2015) and Coniophora puteana v1.0 (Kohler et al 2015); (c) 13 popular soft rot fungal strains – Trichoderma reesei v 2.0 (Martinez et al 2008), Rhizopus oryzae 99-880 from Broad (Ma et al 2009), Aspergillus wentii v1.0 (De Vries et al 2017), Penicillium chrysogenum Wisconsin 54-1255 (Van Den Berg et al 2008), Daldinia eschscholzii EC12 v1.0, Hypoxylon sp. CI-4A v1.0 (Wu et al 2017), Aspergillus niger ATCC 1015 v4.0 (Andersen et al 2011), Hypoxylon sp.…”
Section: Methodsmentioning
confidence: 99%
“…The split-gill fungus Schizophyllum commune with a cyphelloid mode of hymenium production ( Fig. 5; Section 6) and Fistulina hepatica with hymenophores of a tubular, pore-like appearance are closest relatives (Floudas et al, 2015). Furthermore, the unique marine gasteroid Nia vibrissa originates by transformation from euagaric cyphelloid taxa (Binder et al, 2001;Bodensteiner et al, 2004;Thorn et al, 2005).…”
Section: Mushroom Shapes In Taxonomymentioning
confidence: 99%