2020
DOI: 10.1039/d0ra08363a
|View full text |Cite
|
Sign up to set email alerts
|

Enhancing bifunctional catalytic activity of cobalt–nickel sulfide spinel nanocatalysts through transition metal doping and its application in secondary zinc–air batteries

Abstract: Transition metal-doped cobalt–nickel sulfide spinel (Ni1.29Co1.49Mn0.22S4) nanocatalysts for secondary Zn–air batteries with an efficient and stable electrochemical performance.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
17
0

Year Published

2021
2021
2023
2023

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 24 publications
(19 citation statements)
references
References 93 publications
0
17
0
Order By: Relevance
“…Like in metal oxides and hydroxides, Fe doping is evident in significantly improving the OER activity of TM sulfides. 139,140 147 257 mV @ 50 mA cm -2 81 24 h @ 0.6 V vs Ag/AgCl 1 M KOH Co-doped WS2 148 303 mV @ 10 mA cm -2 79 -1 M KOH CoFeS/CNT-P 1000 149 309 mV @ 100 mA cm -2 47 12 h @ 20 mA cm -2 1 M KOH Fe-doped CoS 141 290 mV @ 10 mA cm -2 52.6 10 h @ 10 mA cm -2 1 M KOH Fe-doped Co9S8 142 270 mV @ 10 mA cm -2 70 10 h @ 270 mV 1 M KOH Fe-doped NiS2 143 231 mV @ 100 mA cm -2 43 15 h @ 20 mA cm -2 1 M KOH Fe-doped Ni3S2 144 223 mV @ 200 mA cm -2 55.7 14 h @ 223 mV 1 M KOH Fe-doped Ni3S2/NF 139 249 mV @ 100 mA cm -2 42 20 h @ 270 mV 1 M KOH Fe2.1% doped Ni3S2/NF 140 213 mV @ 100 mA cm -2 33.2 -1 M KOH Fe-doped H-CoMoS 145 282 mV @ 10 mA cm -2 58 1 M KOH Ni1.29Co1.49Mn0.22S4 150 348 mV @ 10 mA cm -2 65 40,000 s @ 10 mA cm -2 1 M KOH N-doped Co9S8/G 151 409 mV @ 10 mA cm -2 82.7 -0.1 M KOH Ni-doped FeS 152 228 mV @ 10 mA cm -2 53 10 h @ 1.47 V vs RHE 1 M KOH N2-NiS2-500 153 270 mV @ 10 mA cm -2 40 h @ 270 mV 1 M KOH (N-Ni3S2@C)/NF 154 310 mV @ 100 mA cm -2 75 20 h @ 1.70 V vs RHE 1 M KOH N-doped NiS/NiS2 155 270 mV @ 10 mA cm -2 99 20 h @ 270 mV 1 M KOH P-doped Co-Ni-S Nanosheets 156 296 mV @ 100 mA cm -2 61.1 16 h @ 10 mA cm -2 1 M KOH P-Ni3S2/NF 157 256 mV @ 10 mA cm -2 30 30 h @ 1.525 V vs RHE 1 M KOH P-Ni3S2/NF 158 306 mV @ 100 mA cm -2 99 10 h @ 1.54 V vs RHE 1 M KOH (P-(Ni,Fe)3S2/NF 159 196 mV @ 10 mA cm -2 30 15 h @ 295 mV 1 M KOH Zn-doped Ni3S2 160 330 mV @ 100 mA cm -2 87 20 h @ 300 mV 1 M KOH Metal selenides Fe-doped CoSe2/NF 161 256 mV @ 100 mA cm -2 35.6 10 h @ 231 mV 1 M KOH Ag-doped CoSe2 nanobelts 162 320 mV @ 10 mA cm -2 56 -0.1 M KOH B-doped Fe5Co4Ni20Se36 163 279.8 mV @ 10 mA cm -2 59.5 10 h @ 10 mA cm -2 1 M KOH Co-doped NiSe 164 380 mV @ 100 mA cm -2 111 >10 h @ 320mV 1 M KOH Co-doped Nickel selenide 165 275 mV @ 30 mA cm -2 63 24 h @ 1.5 V vs RHE 1 M KOH Co0.75Fe0.25(S0.2Se0.8)2 166 293 mV @ 10 mA cm -2 77 -1 M KOH Cu-14-Co3Se4/GC…”
Section: Metal Sulfidesmentioning
confidence: 99%
See 1 more Smart Citation
“…Like in metal oxides and hydroxides, Fe doping is evident in significantly improving the OER activity of TM sulfides. 139,140 147 257 mV @ 50 mA cm -2 81 24 h @ 0.6 V vs Ag/AgCl 1 M KOH Co-doped WS2 148 303 mV @ 10 mA cm -2 79 -1 M KOH CoFeS/CNT-P 1000 149 309 mV @ 100 mA cm -2 47 12 h @ 20 mA cm -2 1 M KOH Fe-doped CoS 141 290 mV @ 10 mA cm -2 52.6 10 h @ 10 mA cm -2 1 M KOH Fe-doped Co9S8 142 270 mV @ 10 mA cm -2 70 10 h @ 270 mV 1 M KOH Fe-doped NiS2 143 231 mV @ 100 mA cm -2 43 15 h @ 20 mA cm -2 1 M KOH Fe-doped Ni3S2 144 223 mV @ 200 mA cm -2 55.7 14 h @ 223 mV 1 M KOH Fe-doped Ni3S2/NF 139 249 mV @ 100 mA cm -2 42 20 h @ 270 mV 1 M KOH Fe2.1% doped Ni3S2/NF 140 213 mV @ 100 mA cm -2 33.2 -1 M KOH Fe-doped H-CoMoS 145 282 mV @ 10 mA cm -2 58 1 M KOH Ni1.29Co1.49Mn0.22S4 150 348 mV @ 10 mA cm -2 65 40,000 s @ 10 mA cm -2 1 M KOH N-doped Co9S8/G 151 409 mV @ 10 mA cm -2 82.7 -0.1 M KOH Ni-doped FeS 152 228 mV @ 10 mA cm -2 53 10 h @ 1.47 V vs RHE 1 M KOH N2-NiS2-500 153 270 mV @ 10 mA cm -2 40 h @ 270 mV 1 M KOH (N-Ni3S2@C)/NF 154 310 mV @ 100 mA cm -2 75 20 h @ 1.70 V vs RHE 1 M KOH N-doped NiS/NiS2 155 270 mV @ 10 mA cm -2 99 20 h @ 270 mV 1 M KOH P-doped Co-Ni-S Nanosheets 156 296 mV @ 100 mA cm -2 61.1 16 h @ 10 mA cm -2 1 M KOH P-Ni3S2/NF 157 256 mV @ 10 mA cm -2 30 30 h @ 1.525 V vs RHE 1 M KOH P-Ni3S2/NF 158 306 mV @ 100 mA cm -2 99 10 h @ 1.54 V vs RHE 1 M KOH (P-(Ni,Fe)3S2/NF 159 196 mV @ 10 mA cm -2 30 15 h @ 295 mV 1 M KOH Zn-doped Ni3S2 160 330 mV @ 100 mA cm -2 87 20 h @ 300 mV 1 M KOH Metal selenides Fe-doped CoSe2/NF 161 256 mV @ 100 mA cm -2 35.6 10 h @ 231 mV 1 M KOH Ag-doped CoSe2 nanobelts 162 320 mV @ 10 mA cm -2 56 -0.1 M KOH B-doped Fe5Co4Ni20Se36 163 279.8 mV @ 10 mA cm -2 59.5 10 h @ 10 mA cm -2 1 M KOH Co-doped NiSe 164 380 mV @ 100 mA cm -2 111 >10 h @ 320mV 1 M KOH Co-doped Nickel selenide 165 275 mV @ 30 mA cm -2 63 24 h @ 1.5 V vs RHE 1 M KOH Co0.75Fe0.25(S0.2Se0.8)2 166 293 mV @ 10 mA cm -2 77 -1 M KOH Cu-14-Co3Se4/GC…”
Section: Metal Sulfidesmentioning
confidence: 99%
“…Open Fe-doped NiSe2 171 231 mV @ 10 mA cm -2 83 20 h @ mA cm -2 1 M KOH Fe-doped Ni3Se4 172 225 mV @ 10 mA cm -2 41 26 h @ 10 mA cm -2 1 M KOH Fe-doped Ni3Se2 173 225 mV @ 10 mA cm -2 35.3 12 h @ 20 mA cm -2 1 M KOH Ni1.12Fe0.49Se2 174 227 mV @ 10 mA cm -2 37.9 10 h @ 10 mA cm -2 1 M KOH Ni0.04Fe0.16 Co0.8Se2 175 230 mV @ 10 mA cm -2 39 15 h @ 1.5 V vs RHE 1 M KOH VSe-Ni0.70Fe0.30Se2 176 210 mV @ 10 mA cm -2 61 20 h @ 10 mA cm -2 1 M KOH Zn-doped CoSe2 177 286 mV @ 10 mA cm -2 37 24 h @ 10, 20, 50 mA cm -2 1 M KOH In addition to the Fe inclusion, doping of other metals such as Ni, 152,178 Co, 148 Mn, 150 Zn, 160 Ce, 147 and Al 146 are also found to be enhancing the OER activity of metal sulfides. For instance, Lin et al fabricated…”
Section: Journal Of Materials Chemistry a Accepted Manuscriptmentioning
confidence: 99%
“…[18,19] Transition metal oxides, phosphates and sulfides have also exhibited promising performance in Zn-air batteries. [20][21][22][23][24][25] In addition, a variety of metal oxide nanoparticles have been interfaced with HMC with varying degrees of success. [26,27] Most recently, metal-organicframeworks (MOFs) have also been studied as a precursor to form metal oxide/carbon nanomaterial hybrids that act as bifunctional catalysts for ORR/OER.…”
Section: Introductionmentioning
confidence: 99%
“…5,[13][14][15][16] Spinel Co 3 O 4 oxide nanoparticles are regarded as a crucial competitive ORR catalyst because of their superior stability and affordability than commercial Pt nanoparticles supported on carbon (Pt/C). [17][18][19][20][21][22][23][24][25] The spinel groups have a general formula, AB 2 O 4 , where A and B are divalent and trivalent metal ions, respectively. The structure is a cubic, closely packed array of oxygen atoms with A 2+ ions occupying eight tetrahedral sites and B 3+ ions occupying half of the octahedral sites.…”
Section: Introductionmentioning
confidence: 99%
“…Platinum (Pt) and its alloy nanoparticles are the most efficient catalyst; however, their high price, inferior durability, and severe surface poisoning are additional hurdles for commercialization 5,13–16 . Spinel Co 3 O 4 oxide nanoparticles are regarded as a crucial competitive ORR catalyst because of their superior stability and affordability than commercial Pt nanoparticles supported on carbon (Pt/C) 17–25 . The spinel groups have a general formula, AB 2 O 4 , where A and B are divalent and trivalent metal ions, respectively.…”
Section: Introductionmentioning
confidence: 99%