Subglottic stenosis (SGS) is defined as the narrowing of the lower larynx. Difficulties in the management of subglottic stenosis, especially in the pediatric population, justify the development of experimental models. The objective of this study was to compare the two methods of experimental subglottic stenosis induction. Twenty-three dogs were randomly selected and assigned by lottery to either one of the two groups: Gp I (n = 10) of electrocoagulation; and Gp II (n = 13) of 23% NaOH injection. In Gp I, self-interruption electrocoagulation was applied to one point in each of the four quadrants of the cricoid cartilage. In Gp II, 0.2 ml of 23% NaOH was injected in the submucosal layer in the anterior and posterior portions of the cricoid cartilage. Once a week, endoscopy was performed and the caliber of the subglottic region was measured using endotracheal tubes, and the injection was repeated if there were no signs of subglottic stenosis. The animals were killed on day 21; animals that developed respiratory distress were killed before day 21. One animal in Gp I died on day 14 after the injection and during transportation; two animals in Gp II died, one on day 7 due to a tracheoesophageal fistula, and the other of unknown causes on day 5. Significant subglottic stenosis (over 51% obstruction) was found in 67% of the animals in Gp I and in 64% of those in Gp II (P = 0.99). Median time to development of significant stenosis was 21 days in both groups, and required either two or three injections. Mean time for the performance of the procedures was significantly shorter (P < 0.01) in Gp I (mean: 6.36 min) than in Gp II (mean: 14.88 min). Electrocoagulation and 23% NaOH injection in the subglottic region were effective in the development of significant subglottic stenosis in dogs, both methods leading to stenosis in the same period of time and after the same number of procedures. However, electrocoagulation was the fastest method.