“…The restoration of skin thickness was dose-dependent since it was more significant with 1% HAFi when compared to 0.2% HAFi. This indicates that HAFi and RAL provide new tools to fight the high morbidity-linked comorbidities associated with dermatoporosis [3,4]. However, the relatively small number of patients in both groups could somehow limit the implications of these results.…”
Section: Discussionmentioning
confidence: 99%
“…According to a French study conducted in 202 subjects ranging between 60 and 80 years, the prevalence of dermatoporosis is as high as 32% [3]. The clinical signs and complications of dermatoporosis have recently been fully characterized [2,4,5]. …”
Background: Dermatoporosis is an emerging clinical condition caused by chronological skin aging, long-term sun exposure and chronic use of corticosteroids; however, genomic expression in dermatoporosis and the efficacy of different therapeutic approaches to prevent and treat dermatoporosis have not been investigated so far. Objective: We examined the possible effect of topical retinaldehyde (RAL) and defined-size hyaluronate fragments (HAFi) on the expression of hyalurosome genes potentially involved in the pathogenesis of dermatoporosis. We also explored the effect of different concentrations of HAFi on skin thickness. Methods: 13 persons were separated into a young control group (n = 8) and a dermatoporosis group (n = 5). Topical treatment of both groups with a combination of 0.05% RAL and 1 or 0.2% HAFi was applied on the forearm twice daily for 30 days. Forearm skin biopsies of both groups were performed before and after application. Hyalurosome genes CD44, heparin-binding epidermal growth factor (HB-EGF), ErbB1, hyaluronate synthase 3 (HAS3) and Hyal2 were chosen as potential markers of dermatoporosis. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed for quantification of mRNA expression of the target hyalurosome genes. Measurement of forearm skin thickness before and after treatment was performed by ultrasonography. Analysis of the results was done by Student's t test. A p value <0.05 was considered statistically significant. Results: In qRT-PCR analysis the relative expression of hyalurosome (CD44, HAS3, HB-EGF) genes was found to be reduced in patients prior to topical treatment and to be notably increased following treatment. The reduced expression of CD44 and HAS3 in patients was specifically restored in dermatoporotic patients after treatment. No difference in skin thickness was observed in controls after treatment. The treatment caused a significant increase in skin thickness in dermatoporotic patients. This increase was more significant with 1% HAFi when compared to 0.2% HAFi. RAL and HAFi also caused a significant reduction in purpuric lesions in patients with dermatoporosis. Conclusion: Our results indicate that topically applied RAL and HAFi regulate hyalurosome gene expression in dermatoporosis and that they show a dose-dependent effect on the correction of skin atrophy in dermatoporotic patients. However, the small number of patients analyzed in both groups somehow limits the statistical power of this study.
“…The restoration of skin thickness was dose-dependent since it was more significant with 1% HAFi when compared to 0.2% HAFi. This indicates that HAFi and RAL provide new tools to fight the high morbidity-linked comorbidities associated with dermatoporosis [3,4]. However, the relatively small number of patients in both groups could somehow limit the implications of these results.…”
Section: Discussionmentioning
confidence: 99%
“…According to a French study conducted in 202 subjects ranging between 60 and 80 years, the prevalence of dermatoporosis is as high as 32% [3]. The clinical signs and complications of dermatoporosis have recently been fully characterized [2,4,5]. …”
Background: Dermatoporosis is an emerging clinical condition caused by chronological skin aging, long-term sun exposure and chronic use of corticosteroids; however, genomic expression in dermatoporosis and the efficacy of different therapeutic approaches to prevent and treat dermatoporosis have not been investigated so far. Objective: We examined the possible effect of topical retinaldehyde (RAL) and defined-size hyaluronate fragments (HAFi) on the expression of hyalurosome genes potentially involved in the pathogenesis of dermatoporosis. We also explored the effect of different concentrations of HAFi on skin thickness. Methods: 13 persons were separated into a young control group (n = 8) and a dermatoporosis group (n = 5). Topical treatment of both groups with a combination of 0.05% RAL and 1 or 0.2% HAFi was applied on the forearm twice daily for 30 days. Forearm skin biopsies of both groups were performed before and after application. Hyalurosome genes CD44, heparin-binding epidermal growth factor (HB-EGF), ErbB1, hyaluronate synthase 3 (HAS3) and Hyal2 were chosen as potential markers of dermatoporosis. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed for quantification of mRNA expression of the target hyalurosome genes. Measurement of forearm skin thickness before and after treatment was performed by ultrasonography. Analysis of the results was done by Student's t test. A p value <0.05 was considered statistically significant. Results: In qRT-PCR analysis the relative expression of hyalurosome (CD44, HAS3, HB-EGF) genes was found to be reduced in patients prior to topical treatment and to be notably increased following treatment. The reduced expression of CD44 and HAS3 in patients was specifically restored in dermatoporotic patients after treatment. No difference in skin thickness was observed in controls after treatment. The treatment caused a significant increase in skin thickness in dermatoporotic patients. This increase was more significant with 1% HAFi when compared to 0.2% HAFi. RAL and HAFi also caused a significant reduction in purpuric lesions in patients with dermatoporosis. Conclusion: Our results indicate that topically applied RAL and HAFi regulate hyalurosome gene expression in dermatoporosis and that they show a dose-dependent effect on the correction of skin atrophy in dermatoporotic patients. However, the small number of patients analyzed in both groups somehow limits the statistical power of this study.
“…DDH represents a massive bleeding event in the deep soft tissue, most often due to minimal trauma 2. Because DDH begins as a painful swelling lesion, similar to severe infectious diseases including cellulitis and necrotizing fasciitis, previous reports have emphasized differentiating between DDH and infectious diseases 2.…”
Section: Figurementioning
confidence: 99%
“…Because early clinical manifestations of DDH can be similar to severe infectious disease, DDH should be carefully distinguished from infectious diseases 2. On the other hand, DDH tends to occur in patients who take corticosteroids for a long period and/or old age, both of which can lead to blood vessel fragility and immunocompromised conditions.…”
“…We have recently shown that CD44 is colocalized with another HB-EGF receptor, erbB1 on keratinocytes [15]. We have also shown that topically applied HAF of intermediate size (HAFi) traverse the skin and induce a CD44-dependent biological effect characterized by a skin regeneration in mice and elderly human patients showing dermatoporosis, the holistic word for human skin fragility and an emerging clinical problem due to chronological aging, long-term sun exposure and chronic use of corticosteroids [15], [16], [17].…”
BackgroundCD44 is a polymorphic proteoglycan and functions as the principal cell-surface receptor for hyaluronate (HA). Heparin-binding epidermal growth factor (HB-EGF) activation of keratinocyte erbB receptors has been proposed to mediate retinoid-induced epidermal hyperplasia. We have recently shown that intermediate size HA fragments (HAFi) reverse skin atrophy by a CD44-dependent mechanism.Methodology and Principal FindingsTreatment of primary mouse keratinocyte cultures with retinaldehyde (RAL) resulted in the most significant increase in keratinocyte proliferation when compared with other retinoids, retinoic acid, retinol or retinoyl palmitate. RAL and HAFi showed a more significant increase in keratinocyte proliferation than RAL or HAFi alone. No proliferation with RAL was observed in CD44−/− keratinocytes. HA synthesis inhibitor, 4-methylumbelliferone inhibited the proliferative effect of RAL. HB-EGF, erbB1, and tissue inhibitor of MMP-3 blocking antibodies abrogated the RAL- or RAL- and HAFi-induced keratinocyte proliferation. Topical application of RAL or RAL and HAFi for 3 days caused a significant epidermal hyperplasia in the back skin of wild-type mice but not in CD44−/− mice. Topical RAL and HAFi increased epidermal CD44 expression, and the epidermal and dermal HA. RAL induced the expression of active HB-EGF and erbB1. However, treatment with RAL and HAFi showed a more significant increase in pro-HB-EGF when compared to RAL or HAFi treatments alone. We then topically applied RAL and HAFi twice a day to the forearm skin of elderly dermatoporosis patients. After 1 month of treatment, we observed a significant clinical improvement.Conclusions and SignificanceOur results indicate that (i) RAL-induced in vitro and in vivo keratinocyte proliferation is a CD44-dependent phenomenon and requires the presence of HA, HB-EGF, erbB1 and MMPs, (ii) RAL and HAFi show a synergy in vitro and in vivo in mouse skin, and (iii) the combination of RAL and HAFi seems to have an important therapeutic effect in dermatoporosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.