Optics Communications 2018 DOI: 10.1016/j.optcom.2017.12.041 View full text
|
|
Share
Tomoyoshi Shimobaba, Yutaka Endo, Takashi Nishitsuji, Takayuki Takahashi, Yuki Nagahama, Satoki Hasegawa, Marie Sano, Ryuji Hirayama, Takashi Kakue, Atsushi Shiraki, Tomoyoshi Ito

Abstract: Computational ghost imaging (CGI) is a single-pixel imaging technique that exploits the correlation between known random patterns and the measured intensity of light transmitted (or reflected) by an object. Although CGI can obtain two- or three- dimensional images with a single or a few bucket detectors, the quality of the reconstructed images is reduced by noise due to the reconstruction of images from random patterns. In this study, we improve the quality of CGI images using deep learning. A deep neural netw…

expand abstract