ABSTRACT:Terrain attributes (TAs) derived from digital elevation models (DEMs) are frequently used in digital soil mapping (DSM) as auxiliary covariates in the construction of prediction models. The DEMs and information extracted from it may be limited with regard to the spatial resolution and error magnitude, and can differ in the behavior of terrain features. The objective of this study was to evaluate the quality and limitations of free DEM data and to evaluate a topographic survey (TS) underlying the choice of a more appropriate model, for use in DSMs at a scale of 1:10,000. The study was conducted in an area of 937 ha in the watershed of Lajeado Giruá, in southern Brazil. The DEMs: DEM-TS, DEM-Topographic Map (TM), DEM-ASTER, DEM-SRTM, and DEM-TOPODATA were evaluated with regard to the precision elevation by statistical tests based on field reference points, the root mean square error (RMSE), identification of the number and size of spurious depressions, and the application of the Brazilian Cartographic Accuracy Standards Law (BCASL) to define the scale of each DEM. In addition, the TA derived from each DEM was compared with the TA from DEM-TS, considered to be terrain reality. The results showed that the elevation data of DEM-TS had the best quality (RMSE = 1.93 m), followed by DEM-SRTM (RMSE = 5.95 m), DEM-Topographic Map (RMSE = 8.28 m), DEM-TOPODATA (RMSE = 9.78 m) and DEM-ASTER (RMSE = 15.57 m). The DEM-TS was well-represented at a 1:10,000 scale, while the DEM-Topographic Map and DEM-SRTM fitted 1:50,000, the DEM-TOPODATA 1:50,000 and the DEM-ASTER a 1:100,000 scale. The results of DEM-SRTM and DEM-TOPODATA were closest to terrain reality (DEM-TS) and had the lowest number of spurious depressions and RMSE values for each evaluated attribute, but were inadequate for not fitting detailed scales compatible with small areas. The techniques for the acquisition of elevation data of each DEM and mainly the flat to gently undulating topography were factors that influenced the results. For a DSM at a scale of 1:10,000 in similar areas, the most appropriate model is DEM-TS.