DOI: 10.1109/iccas.2013.6703931
View full text
Sign up to set email alerts

Abstract: This paper addresses an iterative learning control (ILC) design problem for discrete-time linear systems where the trial lengths could be randomly varying in the iteration domain. An ILC scheme with an iteration-average operator is introduced for tracking tasks with non-uniform trial lengths, which thus mitigates the requirement on classic ILC that all trial lengths must be identical. The learning convergence condition of ILC in mathematical expectation is derived through rigorous analysis. As a result, the p…

Expand abstract