volume 29, issue 2, P239-255 2003
DOI: 10.1007/s00454-002-2809-1
View full text
|
|
Share

Abstract: Let P be a simple polygon. Let the vertices of P be mapped, according to a counterclockwise traversal of the boundary, into a strictly increasing sequence of real numbers in [0, 2π). Let a ray be drawn from each vertex so that the angle formed by the ray and a horizontal line pointing to the right equals, in measure, the number mapped to the vertex. Whenever the rays from two consecutive vertices intersect, let them induce the triangular region with extreme points comprising the vertices and the intersection …

Expand abstract

Search citation statements

Order By: Relevance

Paper Sections

0
0
0
0
0

Citation Types

0
1
0

Publication Types

Select...

Relationship

0
0

Authors

Journals