2021
DOI: 10.1088/1742-6596/2015/1/012102
|View full text |Cite
|
Sign up to set email alerts
|

Aldehyde Gas Detection using Nanostructured Zno-based Gas Sensor fabricated via Horizontal Vapor Phase Growth Technique

Abstract: Detection of aldehydes such as pentanal, hexanal, octanal, and nonanal are studied with the use of nanostructured zinc oxide (ZnO) as sensing element. ZnO nanowires synthesized at optimized growth parameters using horizontal vapor phase growth (HVPG) technique was used due to its unique properties in gas sensing applications. Scanning Electron Microscope (SEM) and Energy Dispersive X-Ray (EDX) were used to verify the growth of ZnO nanowire structures. Further characterization using Source Meter was used to mea… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
0
0

Year Published

2022
2022
2023
2023

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 14 publications
0
0
0
Order By: Relevance
“…In addition, the sensor enabled the identification of patients suffering from diabetes or lung cancer in a first pilot study [5]. Most recently, a zinc oxide nanowire sensor was developed for the detection of aldehydes down to 0.6 ppm which still needs optimization [20], as exhaled aldehydes are usually exhaled in the lower ppb concentration range [11]. Apart from good applicability for point-of-care analysis, specificity of these sensors for aldehydes remains unclear.…”
Section: Detection Methods For Exhaled Aldehydesmentioning
confidence: 99%
“…In addition, the sensor enabled the identification of patients suffering from diabetes or lung cancer in a first pilot study [5]. Most recently, a zinc oxide nanowire sensor was developed for the detection of aldehydes down to 0.6 ppm which still needs optimization [20], as exhaled aldehydes are usually exhaled in the lower ppb concentration range [11]. Apart from good applicability for point-of-care analysis, specificity of these sensors for aldehydes remains unclear.…”
Section: Detection Methods For Exhaled Aldehydesmentioning
confidence: 99%