2021
DOI: 10.3390/rs13051042 View full text |Buy / Rent full text
|
|

Abstract: The detection of low stratus and fog (LSF) at dawn remains limited because of their optical features and weak solar radiation. LSF could be better identified by simultaneous observations of two geostationary satellites from different viewing angles. The present study developed an advanced dual-satellite method (DSM) using FY-4A and Himawari-8 for LSF detection at dawn in terms of probability indices. Optimal thresholds for identifying the LSF from the spectral tests in DSM were determined by the comparison wit… Show more

Help me understand this report

Search citation statements

Order By: Relevance
Select...
2
0
2
0

Year Published

2021
2021
2021
2021

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

0
2
0
Order By: Relevance
“…For instance, the multiband threshold algorithm [5] and U-Net deep learning method [6] were used for sea fog detection based on Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data. An unsupervised learning algorithm was used for sea fog detection based on Communication, Ocean, and Meteorological Satellite (COMS) data [7], while a dual-satellite method was proposed by [8], which combined Himawari-8 and FY-4A satellite data to detect sea fog at dawn. The authors of [9] proposed a decision tree approach that combined Himawari-8 and Geostationary Ocean Color Imager (GOCI) satellite data to detect sea fog.…”
Section: Introductionmentioning
Create an account to read the remaining citation statements from this report. You will also get access to:
  • Search over 1b+ citation statments to see what is being said about any topic in the research literature
  • Advanced Search to find publications that support or contrast your research
  • Citation reports and visualizations to easily see what publications are saying about each other
  • Browser extension to see Smart Citations wherever you read research
  • Dashboards to evaluate and keep track of groups of publications
  • Alerts to stay on top of citations as they happen
  • Automated reference checks to make sure you are citing reliable research in your manuscripts
  • 14 day free preview of our premium features.

Trusted by researchers and organizations around the world

Over 100,000 students researchers, and industry experts at use scite

See what students are saying

rupbmjkragerfmgwileyiopcupepmcmbcthiemesagefrontiersapsiucrarxivemeralduhksmucshluniversity-of-gavle
“…For instance, the multiband threshold algorithm [5] and U-Net deep learning method [6] were used for sea fog detection based on Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data. An unsupervised learning algorithm was used for sea fog detection based on Communication, Ocean, and Meteorological Satellite (COMS) data [7], while a dual-satellite method was proposed by [8], which combined Himawari-8 and FY-4A satellite data to detect sea fog at dawn. The authors of [9] proposed a decision tree approach that combined Himawari-8 and Geostationary Ocean Color Imager (GOCI) satellite data to detect sea fog.…”
Section: Introductionmentioning
“…The radiance threshold and brightness temperature differential method [5][6][7][8][9][10][11][12][13] is most commonly used for daytime sea fog detection in national and international scales worldwide. For example, Deng [14] used a multiband threshold method for MODIS data to detect daytime sea fog in the South China Sea and validated it using sea fog observations from the coastal regions.…”
Section: Introductionmentioning