1989
DOI: 10.3928/0090-4481-19890401-06
|View full text |Cite
|
Sign up to set email alerts
|

Adopted Adolescents and the Birth Parent Quest

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
3
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(3 citation statements)
references
References 5 publications
0
3
0
Order By: Relevance
“…In an (energy conserving) FLRW universe one demands normaldρYMnormalda=3a()ρYM+PYM0.16em$$\begin{equation} \frac{\text{d}{\rho}_{\mathrm{YM}}}{\text{d}a}=-\frac{3}{a}\left({\rho}_{\mathrm{YM}}+{P}_{\mathrm{YM}}\right)\, \end{equation}$$where ρ YM and P YM denote energy density and pressure, respectively, in the deconfining phase of SU(2) Yang– Mills thermodynamic, and a refers to the cosmological scale factor, normalized to afalse(T0false)0.16em=0.16em1$a({T}_{0})\text\,{=}\,1$, where Tc0.33emnormal=0.33emT00.33emnormal=0.33em2.725${T}_{\text{c}}\ \text{=}\ {T}_{0}\ \text{=}\ 2.725$ K indicates the present baseline temperature of the CMB, [ 52 ] interpreted as the critical temperature Tnormalc${T}_{\text{c}}$ for the deconfining‐preconfining phase transition in Hofmann. [ 7 ] The solution of Equation(1) can be recast as a1z+1=exp()13logsYM(T)sYM(T0)0.16em$$\begin{equation} a\equiv \frac{1}{z+1}=\exp\left(-\frac{1}{3}\log\left(\frac{{s}_{\rm YM}(T)}{{s}_{\rm YM}({T}_{0})}\right)\right)\, \end{equation}$$Here the entropy density s YM is given as sYMρYM+PYMT$$\begin{equation} {s}_{\rm YM}\equiv \frac{{\rho}_{\rm YM}+{P}_{\rm YM}}{T} \end{equation}$$which shows that the a priori estimates of the thermal ground‐state contributions to pressure and energy density do not contribute to Equation (2…”
Section: Present Status Of Su(2)cmbmentioning
confidence: 99%
See 2 more Smart Citations
“…In an (energy conserving) FLRW universe one demands normaldρYMnormalda=3a()ρYM+PYM0.16em$$\begin{equation} \frac{\text{d}{\rho}_{\mathrm{YM}}}{\text{d}a}=-\frac{3}{a}\left({\rho}_{\mathrm{YM}}+{P}_{\mathrm{YM}}\right)\, \end{equation}$$where ρ YM and P YM denote energy density and pressure, respectively, in the deconfining phase of SU(2) Yang– Mills thermodynamic, and a refers to the cosmological scale factor, normalized to afalse(T0false)0.16em=0.16em1$a({T}_{0})\text\,{=}\,1$, where Tc0.33emnormal=0.33emT00.33emnormal=0.33em2.725${T}_{\text{c}}\ \text{=}\ {T}_{0}\ \text{=}\ 2.725$ K indicates the present baseline temperature of the CMB, [ 52 ] interpreted as the critical temperature Tnormalc${T}_{\text{c}}$ for the deconfining‐preconfining phase transition in Hofmann. [ 7 ] The solution of Equation(1) can be recast as a1z+1=exp()13logsYM(T)sYM(T0)0.16em$$\begin{equation} a\equiv \frac{1}{z+1}=\exp\left(-\frac{1}{3}\log\left(\frac{{s}_{\rm YM}(T)}{{s}_{\rm YM}({T}_{0})}\right)\right)\, \end{equation}$$Here the entropy density s YM is given as sYMρYM+PYMT$$\begin{equation} {s}_{\rm YM}\equiv \frac{{\rho}_{\rm YM}+{P}_{\rm YM}}{T} \end{equation}$$which shows that the a priori estimates of the thermal ground‐state contributions to pressure and energy density do not contribute to Equation (2…”
Section: Present Status Of Su(2)cmbmentioning
confidence: 99%
“…[ 92 ] LSU(2)()T,ν=LU(1)×()1Gfalse(2πνfalse)2θ()νν*0.16em$$\begin{equation} {L}_{\text{SU(2)}}\left(T,\nu \right) = {L}_{\text{U(1)}}\ensuremath{\times{}}\left(1-\frac{G}{{(2\pi \nu )}^{2}}\right)\theta \left(\nu -{\nu}^{\ast}\right)\, \end{equation}$$and specifically for SU(2) CMB one has Tc=T0=2.725${T}_{\text{c}} = {T}_{0} = 2.725$,K. [ 5,7 ] In Figure 2 the temperature dependence of spectral black‐body radiance in the range from 0--30$0\text{--}30$ K is shown for five different frequencies in case of SU(2) CMB and the conventional U(1) theory. Notice the gap at the lowest frequency of 15 GHz and the shifted linear dependence (pseudo Rayleigh– Jeans) to the right of this gap due to screening in SU(2) CMB .…”
Section: Cmb At Large Anglesmentioning
confidence: 99%
See 1 more Smart Citation