2014
DOI: 10.1134/s1028335814110093
|View full text |Cite
|
Sign up to set email alerts
|

A statistical model of hydrogen-induced fracture of metals

Abstract: The fracture process of metals due to hydrogen embrittlement is described theoretically as a first order phase transition. The fractured and unfractured phases are in equilibrium at the instant of fracture and are described by the equality of stresses and thermodynamic potentials. In the context of this approach, the dependences of the fracture stress on the molar hydrogen concentration and on the fracture deformation are calculated. The dependence on the molar hydrogen concentration turned out to be close to … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0
1

Year Published

2018
2018
2020
2020

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
(2 citation statements)
references
References 13 publications
0
1
0
1
Order By: Relevance
“…Indeitsev et al [80] proposed a model for the fracture stress as a function of hydrogen content based on statistical mechanics. They estimated the number of broken chemical bonds produced by hydrogen using Fermi–Dirac statistics, where the energy is equal to the sum of the plastic energy in the absence of hydrogen and the excess energy induced by hydrogen-induced decohesion.…”
Section: Description Of the Failure Mechanisms Affecting Steelsmentioning
confidence: 99%
“…Indeitsev et al [80] proposed a model for the fracture stress as a function of hydrogen content based on statistical mechanics. They estimated the number of broken chemical bonds produced by hydrogen using Fermi–Dirac statistics, where the energy is equal to the sum of the plastic energy in the absence of hydrogen and the excess energy induced by hydrogen-induced decohesion.…”
Section: Description Of the Failure Mechanisms Affecting Steelsmentioning
confidence: 99%
“…Растворимость водорода в твердом алюминии равна 0.034 ml/100 g при температуре плавления T ∼ 660 • C, поэтому, как правило, оказывается, что атомы водорода собираются вместе. Следовательно, в твердом алюминии начинается процесс образования пор [2], приводящий впоследствии к охрупчиванию и образованию трещин [3][4][5][6][7]. Именно поэтому детальное микроскопическое описание поведения атомов водорода в алюминии является актуальной задачей.…”
unclassified