2017
DOI: 10.1590/0104-1428.2016
|View full text |Cite
|
Sign up to set email alerts
|

Modelos de percolação elétrica aplicados para compósitos poliméricos condutores

Abstract: AesumoO presente artigo apresenta a aplicação e adequação dos modelos de percolação elétrica em trabalhos experimentais e teóricos da literatura para compósitos poliméricos condutores. Foi realizado um levantamento das publicações referentes aos modelos estudados para os diferentes tipos de cargas condutoras mais aplicadas na preparação destes compósitos, tais como pós metálicos, grafite, negro de fumo, nanofibras e nanotubos de carbono. A discussão está apresentada quanto à adequação dos modelos ao comportame… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2018
2018
2023
2023

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(3 citation statements)
references
References 85 publications
0
2
0
1
Order By: Relevance
“…This behavior indicates that with the higher volume fraction of CB, the higher is the approximation between the `CB particles, forming an interconnected network and facilitating the electrical conductivity, where the composite changes from an insulator to a conductor. The point where there is the highest rate of change in electrical conductivity or resistivity as a function of the volume fraction of the conductive filler is called the electrical percolation threshold.. [26][27][28][29] To obtain the volume fraction of CB where percolation occurred in the CPC, it is essential to obtain a sigmoid mathematical model that helps in the identification, the Boltzmann model was used according to Equation (3). [29] Considering the experimental results of electrical conductivity for the BioPE/CB CPCs obtained and adjusting to the model, the result is obtained, in which it is observed that the maximum value of the derivative of the sigmoid model obtained occurred at the CB volume fraction of 0.36.…”
Section: Tensile Testsmentioning
confidence: 99%
“…This behavior indicates that with the higher volume fraction of CB, the higher is the approximation between the `CB particles, forming an interconnected network and facilitating the electrical conductivity, where the composite changes from an insulator to a conductor. The point where there is the highest rate of change in electrical conductivity or resistivity as a function of the volume fraction of the conductive filler is called the electrical percolation threshold.. [26][27][28][29] To obtain the volume fraction of CB where percolation occurred in the CPC, it is essential to obtain a sigmoid mathematical model that helps in the identification, the Boltzmann model was used according to Equation (3). [29] Considering the experimental results of electrical conductivity for the BioPE/CB CPCs obtained and adjusting to the model, the result is obtained, in which it is observed that the maximum value of the derivative of the sigmoid model obtained occurred at the CB volume fraction of 0.36.…”
Section: Tensile Testsmentioning
confidence: 99%
“…As already discussed in the literature, conducting polymers are difficult materials to solubilize and disperse in different RAM matrices, where the attenuation characteristics of the final composite are strongly related to the type of load interaction used. 12,17,29 Figure 10 shows that reaction 1 demonstrated, at frequencies of 9.5 and 10 GHz, a resonant peak with maximum values of -9.6 dB (~90%).…”
Section: Reflectivitymentioning
confidence: 99%
“…Para valores de NTC inferiores a 0,5% vol. prevaleceram as propriedades isolantes do polímero; quando acima desta, o material adquiriu condutividade típica de semicondutores (entre 10 -3 e 10 -5 S/m), valores estes já relatados na literatura por outros autores (Safadi et al, 2002;Stéphan et al, 2002;Coelho & Morales, 2017). Com o aumento da concentração de cargas, um platô na condutividade ficou evidente, atingindo ordem de 10 -3 S/m, para a máxima capacidade de condução do sistema, com concentrações de 1,13% vol.…”
Section: Limiar De Percolação Dos Compósitosunclassified