2014
DOI: 10.1016/j.rboe.2014.07.002
|View full text |Cite
|
Sign up to set email alerts
|

Densitometric study of the clavicle: bone mineral density explains the laterality of the fractures

Abstract: IntroductionEpidemiological studies have shown laterality in clavicle fractures, such that the left side is more frequently fractured. The present study had the aim of evaluating whether the clavicle on the dominant side is denser and thus explaining the greater incidence of fractures on the non-dominant side.Materials and methodsThis was a descriptive study on 52 healthy patients, who were classified according to age, sex and whether the dominant or non-dominant side was affected.ResultsThe participants compr… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2018
2018
2020
2020

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 13 publications
(13 reference statements)
0
1
0
Order By: Relevance
“…This is unlikely because the clavicle is an example of a bone that is formed partly through endochondral ossification (like the long bones) and partly through intramembranous ossification (like the skull). The clavicles are bones which are known to adapt to function and lose bone mass through disuse, like long bones and unlike the skull (8), suggesting that intramembranous ossification is not invariably associated with a lack of sensitivity to disuse. Furthermore, the lateral end of the clavicle, which is the part formed by intramembranous ossification is affected by a bone wasting condition that has no effect on bone mass in the skull (9).…”
Section: Introductionmentioning
confidence: 99%
“…This is unlikely because the clavicle is an example of a bone that is formed partly through endochondral ossification (like the long bones) and partly through intramembranous ossification (like the skull). The clavicles are bones which are known to adapt to function and lose bone mass through disuse, like long bones and unlike the skull (8), suggesting that intramembranous ossification is not invariably associated with a lack of sensitivity to disuse. Furthermore, the lateral end of the clavicle, which is the part formed by intramembranous ossification is affected by a bone wasting condition that has no effect on bone mass in the skull (9).…”
Section: Introductionmentioning
confidence: 99%