Results are presented from searches for the standard model Higgs boson in proton-proton collisions at root s = 7 and 8 TeV in the Compact Muon Solenoid experiment at the LHC, using data samples corresponding to integrated luminosities of up to 5.1 fb(-1) at 7 TeV and 5.3 fb(-1) at 8 TeV. The search is performed in five decay modes: gamma gamma, ZZ, W+W-, tau(+)tau(-), and b (b) over bar. An excess of events is observed above the expected background, with a local significance of 5.0 standard deviations, at a mass near 125 GeV, signalling the production of a new particle. The expected significance for a standard model Higgs boson of that mass is 5.8 standard deviations. The excess is most significant in the two decay modes with the best mass resolution, gamma gamma and ZZ; a fit to these signals gives a mass of 125.3 +/- 0.4(stat.) +/- 0.5(syst.) GeV. The decay to two photons indicates that the new particle is a boson with spin different from one. (C) 2012 CERN. Published by Elsevier B.V. All rights reserved
produced a 1 km resolution global land cover characteristics database for use in a wide range of continental-to global-scale environmental studies. This database provides a unique view of the broad patterns of the biogeographical and ecoclimatic diversity of the global land surface, and presents a detailed interpretation of the extent of human development. The project was carried out as an International Geosphere-Biosphere Programme, Data and Information Systems (IGBP-DIS) initiative. The IGBP DISCover global land cover product is an integral component of the global land cover database. DISCover includes 17 general land cover classes de ned to meet the needs of IGBP core science projects. A formal accuracy assessment of the DISCover data layer will be completed in 1998. The 1 km global land cover database was developed through a continent-bycontinent unsupervised classi cation of 1 km monthly Advanced Very High Resolution Radiometer (AVHRR) Normalized Di erence Vegetation Index (NDVI) composites covering 1992-1993. Extensive post-classi cation strati cation was necessary to resolve spectral/temporal confusion between disparate land cover types. The complete global database consists of 961 seasonal land cover regions that capture patterns of land cover, seasonality and relative primary productivity. The seasonal land cover regions were aggregated to produce seven separate land cover data sets used for global environmental modelling and assessment. The data sets include IGBP DISCover
The ENCyclopedia Of DNA Elements (ENCODE) Project aims to identify all functional elements in the human genome sequence. The pilot phase of the Project is focused on a specified 30 megabases (∼1%) of the human genome sequence and is organized as an international consortium of computational and laboratory-based scientists working to develop and apply high-throughput approaches for detecting all sequence elements that confer biological function. The results of this pilot phase will guide future efforts to analyze the entire human genome.
The land and ocean absorb on average over half of the anthropogenic emissions of carbon dioxide (CO2) every year. These CO2 “sinks” are modulated by climate change and variability. Here we use a suite of nine Dynamic Global Vegetation Models (DGVMs) 5 and four Ocean Biogeochemical General Circulation Models (OBGCMs) to quantify the global and regional climate and atmospheric CO2 – driven trends in land and oceanic CO2 exchanges with the atmosphere over the period 1990–2009, attribute these trends to underlying processes, and quantify the uncertainty and level of model agreement. The models were forced with reconstructed climate fields and observed 10 global atmospheric CO2; Land Use and Land Cover Changes are not included for the DGVMs. Over the period 1990–2009, the DGVMs simulate a mean global land carbon sink of −2.4±0.7 PgCyr−1 with a small significant trend of −0.06±0.03 PgCyr−2 (increasing sink). Over the more limited period 1990–2004, the ocean models simulate a mean ocean sink of −2.2±0.2 PgCyr−1 with a trend in the net C uptake that 15 is indistinguishable from zero (−0.01±0.02 PgCyr−2). The two ocean models that extended the simulations until 2009 suggest a slightly stronger, but still small trend of −0.02±0.01 PgCyr−2. Trends from land and ocean models compare favourably to the land greenness trends from remote sensing, atmospheric inversion results, and the residual land sink required to close the global carbon budget. Trends in the land sink 20 are driven by increasing net primary production (NPP) whose statistically significant trend of 0.22±0.08 PgCyr−2 exceeds a significant trend in heterotrophic respiration of 0.16±0.05 PgCyr−2 – primarily as a consequence of wide-spread CO2 fertilisation of plant production. Most of the land-based trend in simulated net carbon uptake originates from natural ecosystems in the tropics (−0.04±0.01 PgCyr−2), with almost no 25 trend over the northern land region, where recent warming and reduced rainfall offsets the positive impact of elevated atmospheric CO2 on carbon storage. The small uptake trend in the ocean models emerges because climate variability and change, and in particular increasing sea surface temperatures, tend to counteract the trend in ocean uptake driven by the increase in atmospheric CO2. Large uncertainty remains in the magnitude and sign of modelled carbon trends in several regions, and on the influence of land use and land cover changes on regional trends
[1] Monthly CO 2 fluxes are estimated across 1988-2003 for 22 emission regions using data from 78 CO 2 measurement sites. The same inversion (method, priors, data) is performed with 13 different atmospheric transport models, and the spread in the results is taken as a measure of transport model error. Interannual variability (IAV) in the winds is not modeled, so any IAV in the measurements is attributed to IAV in the fluxes. When both this transport error and the random estimation errors are considered, the flux IAV obtained is statistically significant at P 0.05 when the fluxes are grouped into land and ocean components for three broad latitude bands, but is much less so when grouped into continents and basins. The transport errors have the largest impact in the extratropical northern latitudes. A third of the 22 emission regions have significant IAV, including the Tropical East Pacific (with physically plausible uptake/release across the 1997-2000 El Niño/La Niña) and Tropical Asia (with strong release in 1997/1998 coinciding with large-scale fires there). Most of the global IAV is attributed robustly to the tropical/southern land biosphere, including both the large release during the 1997/1998 El Niño and the post-Pinatubo uptake.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.