Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
The modeling and simulation of the electrified transit system is an essential element in the design process of a new railway, or an existing one being modernized, particularly in DC powered railway systems which have significant losses in the power network. With the continuing focus on environmental concerns and rising energy prices, energy-saving operation technology for railway systems has been paid more and more attention. Previous work on energy optimization techniques mainly focuses on optimizing driving strategies subject to geographic and physical constraints, and kinematic equations, which only minimizes the mechanical energy consumption without considering the loss from the power supply network. This paper proposes a DC power network modeling technique and extends the traditional energy-saving methods to develop a novel approach which combines traction power supply network calculations and numerical algorithms to minimize the electrical energy delivered from substations. As train resistance is time-varying with the train movement, iterative algorithms are presented in order to calculate the energy consumption dynamically. Some case studies based on the Beijing Yizhuang Subway Line are presented to illustrate the proposed approach for power network simulation and energy-saving, in which the energy consumption of both the practical operation and optimal operation are compared.
Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.