Radial force and torque are the control objectives that determine the machine performance of levitation and rotation in a bearingless switched reluctance motor (BSRM). This paper proposes a control scheme for rotating and levitating a 12/8 BSRM. The motor average torque and radial force are independently controlled with hybrid excitations in main windings and levitation windings. First, the mathematical relationship between radial force and currents, which is utilized in this paper, is derived by using the Maxwell stress tensor method. Then, the proposed control scheme is analyzed. The average torque of each phase generated in the levitation region equals zero for its symmetry of the aligned position. Accordingly, the current calculating algorithm is deduced to minimize the magnitude of instantaneous torque in the levitation region. The principle and realization of the proposed scheme are demonstrated with finite-element (FE) analysis. Experimental results show that the proposed scheme is effective for a stable levitation.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.