Traditional power supply method for moving electric railway vehicles is based on contact type power collection technology. This sometimes cannot meet the requirements of modern rail transportation. A new wireless power transfer (WPT) technology can offer significant benefits in modern rail transportation particularly in some stringent environments. This paper reviews the status and the development of rail transit power supply technology, and introduces a new challenging technology-inductive power transfer (IPT) technology for rail transit. Tesla established the underpinning of IPT technology and creatively and significantly demonstrated power transfer by using highly resonant tuned coils long time ago. However, only in recent years the IPT technology has been significantly improved including the transfer air-gap length, transfer efficiency, coupling factor, power transfer capability and so on. This is mainly due to innovative semiconductor switches, higher control frequency, better coil designs and high performance material, new track and vehicle construction techniques. Recent advances in IPT for rail transit and major milestones of the developments are summarized in this paper. Some important technical issues such as coupling coil structures, power supply schemes, segmentation switching techniques for long-distance power supply, and bidirectional IPT systems for braking energy feedback are discussed. Index Terms-Bidirectional energy transfer, inductive power transfer (IPT), magnetic coupling, rail transit, segmented power supply, wireless power transfer (WPT).
In this paper, a novel pulse density modulation (PDM) with semi-bridgeless active rectifier (S-BAR) in inductive power transfer (IPT) system for rail vehicle is proposed. It is to reduce switching losses of the active rectifier in pickups. In the control method, the insulated-gate bipolar transistors (IGBTs) in the S-BAR are controlled by synchronous PDM signals, so that zero-voltage switching (ZVS) and zero-current switching (ZCS) can be achieved in the whole output power range. The output power is regulated by changing the pulse density (PD) of the S-BAR since the it is almost linear proportional with the PD in high quality factor of pickup side. The communication device between the primary side and pickup side is not necessary anymore. The detailed theoretical analyses of the PDM method are provided, and its advantages are shown in a 7.5kW IPT prototype for rail vehicle. The experimental results are presented to verify the analysis and demonstrate the performance. The overall efficiency of the system by PDM control is 74.2% which is improved by 4% compared with phase shift (PS) control at light load.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.