The resistance among various microbial species (infectious agents) to different antimicrobial drugs has emerged as a cause of public health threat all over the world at a terrifying rate. Due to the pacing advent of new resistance mechanisms and decrease in efficiency of treating common infectious diseases, it results in failure of microbial response to standard treatment, leading to prolonged illness, higher expenditures for health care, and an immense risk of death. Almost all the capable infecting agents (e.g., bacteria, fungi, virus, and parasite) have employed high levels of multidrug resistance (MDR) with enhanced morbidity and mortality; thus, they are referred to as “super bugs.” Although the development of MDR is a natural phenomenon, the inappropriate use of antimicrobial drugs, inadequate sanitary conditions, inappropriate food-handling, and poor infection prevention and control practices contribute to emergence of and encourage the further spread of MDR. Considering the significance of MDR, this paper, emphasizes the problems associated with MDR and the need to understand its significance and mechanisms to combat microbial infections.
Although modern lifestyle has eased the quality of human life, this lifestyle's related patterns have imparted negative effects on health to acquire multiple diseases. Many synthetic drugs are invented during the last millennium but most if not all of them possess several side effects and proved to be costly. Convincing evidences have established the premise that the phytotherapeutic potential of natural compounds and need of search for novel drugs from natural sources are of high priority. Phenolic acids (PAs) are a class of secondary metabolites spread throughout the plant kingdom and generally involved in plethora of cellular processes involved in plant growth and reproduction and also produced as defense mechanism to sustain various environmental stresses. Extensive research on PAs strongly suggests that consumption of these compounds hold promise to offer protection against various ailments in humans. This paper focuses on the naturally derived PAs and summarizes the action mechanisms of these compounds during disease conditions. Based on the available information in the literature, it is suggested that use of PAs as drugs is very promising; however more research and clinical trials are necessary before these bioactive molecules can be made for treatment. Finally this review provides greater awareness of the promise that natural PAs hold for use in the disease prevention and therapy.
This study explored the antifungal potential of perillyl alcohol (PA), a natural monoterpene alcohol, against most prevalent human fungal pathogen C. albicans, its clinical isolates and four non-albicans species of Candida. To resolve the potential mechanisms, we used whole genome transcriptome analyses of PA treated Candida cells to examine the affected cellular circuitry of this pathogen. The transcriptome data revealed a link between calcineurin signaling and PA as among the several categories of PA responsive genes the down regulation of calcineurin signaling gene CNB1 was noteworthy which was also confirmed by both molecular docking and susceptibility assays. We observed that PA treated Candida phenocopied compromised calcineurin pathway stress responses and turned sensitive to alkaline pH, ionic, membrane, salinity, endoplasmic reticulum and serum stresses. Indispensability of functional calcineurin was further confirmed as calcineurin mutant was hypersensitive to PA while constitutively expressed calcineurin strain remained resistant. We explored that PA leads to perturbed membrane integrity as depicted through depleted ergosterol levels and disrupted pH homeostasis. Moreover, PA caused cell wall damage which was evident from hypersensitivity against cell wall perturbing agents (congo red, calcoflour white), SEM and enhanced rate of cell sedimentation. Furthermore, PA inhibited potential virulence traits including morphological transition, biofilm formation and displayed diminished capacity to adhere both to the polystyrene surface and buccal epithelial cells. The study also revealed that PA leads to cell cycle arrest and mitochondrial dysfunction in C. albicans. Together, the present study provides enough evidence for further work on PA so that better strategies could be employed to treat Candida infections.
The anticandidal potential of Geraniol (Ger) against Candida albicans has already been established. The present study reveals deeper insights into the mechanisms of action of Ger. We observed that the repertoire of antifungal activity was not only limited to C. albicans and its clinical isolates but also against non-albicans species of Candida. The membrane tampering effect was visualized through transmission electron micrographs, depleted ergosterol levels and altered plasma membrane ATPase activity. Ger also affects cell wall as revealed by spot assays with cell wall-perturbing agents and scanning electron micrographs. Functional calcineurin pathway seems to be indispensable for the antifungal effect of Ger as calcineurin signaling mutant was hypersensitive to Ger while calcineurin overexpressing strain remained resistant. Ger also causes mitochondrial dysfunction, impaired iron homeostasis and genotoxicity. Furthermore, Ger inhibits both virulence attributes of hyphal morphogenesis and biofilm formation. Taken together, our results suggest that Ger is potential antifungal agent that warrants further investigation in clinical applications so that it could be competently employed in therapeutic strategies to treat Candida infections.
Among the several mechanisms of multidrug resistance (MDR), overexpression of drug efflux pumps CaCdr1p and CaMdr1p belonging to ATP binding cassette (ABC) and major facilitator superfamily (MFS) respectively remain the predominant mechanisms of candidal infections. Therefore inhibiting or modulating the function of these transporters continues to draw attention as effective strategy to combat MDR. We have previously reported the antifungal potential of Geraniol (Ger), a natural monoterpenoid from Palmarosa oil, against Candida albicans. Herein, we explored the fungicidal nature of Ger. The Rhodamine 6G (R6G) and Nile red accumulation confirms the specific effect on CaCdr1p. Mechanistic insights with Candida cells overexpressing CaCdr1p and CaMdr1p revealed that Ger specifically modulates CaCdr1p activity. Kinetic studies further unraveled the competitive inhibition of Ger for R6G efflux as evident from increased apparent Km without affecting Vmax value. The effect of Ger on CaCdr1p was substantiated by molecular docking analyses, which depicted in-silico binding affinity of Ger with CaCdr1p and explored that Ger binds to the active site of CaCdr1p with higher binding energy. Although RT-PCR and western blot revealed no change in expressions of CDR1 and CaCdr1p, confocal microscopy images however depicted CaCdr1p mislocalization in presence of Ger. Interestingly, Ger was synergistic (FICI<0.5) with fluconazole (FLC) which is a well known antifungal drug. Furthermore, Ger sensitizes the FLC sensitive and resistant clinical matched pair of isolates Gu4/Gu5 and led to abrogated R6G efflux and depleted ergosterol. Furthermore, Rhodamine B labeling demonstrates altered mitochondrial potential with Ger which suggest possible linkage of dysfunctional mitochondria with CaCdr1p activity. We also estimated phenotypic virulence marker extracellular phospholipase activity which was considerably diminished along with inhibited cell adherence and biofilm biomass. Lastly, antifungal efficacy of Ger was demonstrated by enhanced survival of Caenorhabditis elegans model and negligible hemolytic activity (20%). Together, modulation of efflux pump activity by Ger and FLC synergism represent a promising approach for combinatorial treatment of candidiasis.
Tuberculosis (TB) still remains the thorn in the flesh of efficient therapeutics affecting one-third of global population annually. There are several factors that enhance the susceptibility to TB infections including malnutrition, smoking, and immunocompromised conditions such as AIDS. In the recent years, growing body of evidence has gained considerable prominence which suggests that Diabetes Mellitus (DM) is individual risk factor leading to complicated TB infections. In this article the authors have attempted to summarize the link of type 2 DM with TB, the mechanistic action of how DM sensitizes for developing the active TB infection from the latent infection, and problems faced during treatment followed by possible preventive measures. We have tried to give account of the alterations that occurred in DM making a person more prone to develop TB.
Introduction:There is an increasing burden of multidrug resistance. As a result, deciphering the mechanisms of action of natural compounds with antifungal activity has gained considerable prominence. We aimed to elucidate the probable mechanism of action of citronellal, a monoterpenoid found in the essential oil extracted from Cymbopogon plants, against Candida albicans. Methods: Drug susceptibility was measured by broth microdilution and spot assays. Ergosterol levels were estimated using the alcoholic potassium hydroxide method and H + extrusion was assessed by monitoring the glucose-induced acidifi cation of the external medium. Virulence traits were studied by hyphal morphogenesis and biofi lm formation, along with fungal cell adherence to polystyrene surface and human oral epithelial cells. Results: Citronellal showed anticandidal activity against C. albicans and non-albicans species of Candida at a minimum inhibitory concentration of 1 mg/ml. Citronellal interfered with membrane homeostasis, which is the major target of known antifungal drugs, by increasing the hypersensitivity of the fungi to membrane-perturbing agents, reducing ergosterol levels, and diminishing glucose-induced H + extrusion. In addition, oxidative and genotoxic stresses were induced via an increased production of reactive oxygen species. Furthermore, citronellal inhibited the virulent attributes of yeast-to-hypha transition and biofi lm formation. It also reduced cell adherence to polystyrene surface and the human oral epithelial cells. Conclusions: This is the fi rst study to propose the cell membrane, morphogenetic switching, biofi lm formation, and cell adherence of Candida albicans as potential targets for the anticandidal activity of citronellal. However, clinical investigations on the therapeutic applications of citronellal are required.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers