Time-dependent changes in myosin heavy chain (MHC) isoform expression were investigated in rat soleus muscle unloaded by hindlimb suspension. Changes at the mRNA level were measured by RT-PCR and correlated with changes in the pattern of MHC protein isoforms. Protein analyses of whole muscle revealed that MHCI decreased after 7 days, when MHCIIa had increased, reaching a transient maximum by 15 days. Longer periods led to inductions and progressive increases of MHCIId(x) and MHCIIb. mRNA analyses of whole muscle showed that MHCIId(x) displayed the steepest increase after 4 days and continued to rise until 28 days, the longest time period investigated. MHCIIb mRNA followed a similar time course, although at lower levels. MHCIalpha mRNA, present at extremely low levels in control soleus, peaked after 4 days, stayed elevated until 15 days, and then decayed. Immunohistochemistry of 15-day unloaded muscles revealed that MHCIalpha was present in muscle spindles but at low amounts also in extrafusal fibers. The slow-to-fast transitions thus seem to proceed in the order MHCIbeta --> MHCIIa --> MHCIId(x) --> MHCIIb. Our findings indicate that MHCIalpha is transiently upregulated in some fibers as an intermediate step during the transition from MHCIbeta to MHCIIa.
To investigate the plasticity of slow and fast muscles undergoing slow-to-fast transition, rat soleus (SOL), gastrocnemius (GAS), and extensor digitorum longus (EDL) muscles were exposed for 14 days to 1) unweighting by hindlimb suspension (HU), or 2) treatment with the beta(2)-adrenergic agonist clenbuterol (CB), or 3) a combination of both (HU-CB). In general, HU elicited atrophy, CB induced hypertrophy, and HU-CB partially counteracted the HU-induced atrophy. Analyses of myosin heavy (MHC) and light chain (MLC) isoforms revealed HU- and CB-induced slow-to-fast transitions in SOL (increases of MHCIIa with small amounts of MHCIId and MHCIIb) and the upregulation of the slow MHCIa isoform. The HU- and CB-induced changes in GAS consisted of increases in MHCIId and MHCIIb ("fast-to-faster transitions"). Changes in the MLC composition of SOL and GAS consisted of slow-to-fast transitions and mainly encompassed an exchange of MLC1s with MLC1f. In addition, MLC3f was elevated whenever MHCIId and MHCIIb isoforms were increased. Because the EDL is predominantly composed of type IID and IIB fibers, HU, CB, and HU-CB had no significant effect on the MHC and MLC patterns.
O-linked N-acetylglucosaminylation (O-GlcNAc) is a regulatory post-translational modification of nucleo-cytoplasmic proteins that has a complex interplay with phosphorylation. O-GlcNAc has been described as a nutritional sensor, the level of UDP-GlcNAc that serves as a donor for the uridine diphospho-N-acetylglucosamine:polypeptide -N-acetyl-glucosaminyltransferase being regulated by the cellular fate of glucose. Because muscular contraction is both dependent on glucose metabolism and is highly regulated by phosphorylation/dephosphorylation processes, we decided to investigate the identification of O-GlcNAc-modified proteins in skeletal muscle using a proteomic approach. Fourteen proteins were identified as being O-GlcNAc modified. These proteins can be classified in three main classes: i) proteins implicated in the signal transduction and in the translocation between the cytoplasm and the nucleus or structural proteins, ii) proteins of the glycolytic pathway and energetic metabolism, and iii) contractile proteins (myosin heavy chain). A decrease in the O-GlcNAc level was measured in the slow postural soleus muscle after 14-day hindlimb unloading, a model of functional atrophy characterized by a decrease in the force of contraction. These results strongly suggest that O-GlcNAc modification may serve as an important regulation system in skeletal muscle physiology.
In this work we studied changes in passive elastic properties of rat soleus muscle fibers subjected to 14 days of hindlimb unloading (HU). For this purpose, we investigated the titin isoform expression in soleus muscles, passive tension-fiber strain relationships of single fibers, and the effects of the thick filament depolymerization on passive tension development. The myosin heavy chain composition was also measured for all fibers studied. Despite a slow-to-fast transformation of the soleus muscles on the basis of their myosin heavy chain content, no modification in the titin isoform expression was detected after 14 days of HU. However, the passive tension-fiber strain relationships revealed that passive tension of both slow and fast HU soleus fibers increased less steeply with sarcomere length than that of control fibers. Gel analysis suggested that this result could be explained by a decrease in the amount of titin in soleus muscle after HU. Furthermore, the thick filament depolymerization was found to similarly decrease passive tension in control and HU soleus fibers. Taken together, these results suggested that HU did not change titin isoform expression in the soleus muscle, but rather modified muscle stiffness by decreasing the amount of titin.
O-Linked N-acetylglucosaminylation termed O-GlcNAc is a dynamic cytosolic and nuclear glycosylation that is dependent both on glucose flow through the hexosamine biosynthesis pathway and on phosphorylation because of the existence of a balance between phosphorylation and O-GlcNAc. This glycosylation is a ubiquitous post-translational modification, which probably plays an important role in many aspects of protein functions. We have previously reported that, in skeletal muscle, proteins of the glycolytic pathway, energetic metabolism, and contractile proteins were O-GlcNAc-modified and that O-GlcNAc variations could control the muscle protein homeostasis and be implicated in the regulation of muscular atrophy.In this paper, we report O-N-acetylglucosaminylation of a number of key contractile proteins (i.e. myosin heavy and light chains and actin), which suggests that this glycosylation could be involved in skeletal muscle contraction. Moreover, our results showed that incubation of skeletal muscle skinned fibers in N-acetyl-D-glucosamine, in a concentration solution known to inhibit O-GlcNAc-dependent interactions, induced a decrease in calcium sensitivity and affinity of muscular fibers, whereas the cooperativity of the thin filament proteins was not modified. Thus, our results suggest that O-GlcNAc is involved in contractile protein interactions and could thereby modulate muscle contraction. O-Linked N-acetylglucosaminylation, termed O-GlcNAc,5 is a regulatory post-translational modification that occurs in nuclear and cytosolic proteins, corresponding to the addition of a unique monosaccharide, N-acetyl-D-glucosamine, to a serine and threonine hydroxyl group by a -linkage (1). Because of the existence of the UDP-GlcNAc-peptide--GlcNAc transferase, which transfers the monosaccharide into proteins (2, 3), and the N-acetyl--D-glucosaminidase, which removes it (4), OGlcNAc is more similar to phosphorylation than classical glycosylation. The half-life of the monosaccharide is shorter than the half-life of the protein backbone (5), indicating that the O-GlcNAc cycle could rapidly respond to cellular signals (6). All of the known O-GlcNAc proteins described to date are also phosphoproteins (7) (for review, see Ref. 8). Modifications by O-GlcNAc or phosphorylation could occur on the same site (9) or at neighboring sites (10); this competition between O-GlcNAc and phosphorylation is called the "Yin-Yang" process.O-GlcNAc has been described to play a role in various cell functions: in nuclear transport (11-13); in protein degradation, with a reversible inhibition of the proteasome itself (14) and a protection of the modified protein against proteasomal degradation (9, 15, 16); and in regulation of protein expression, with the regulation of transcription (10, 17-19) and translation (20). The involvement of O-GlcNAc in protein-protein interactions has been described in different biological systems. Indeed, many proteins playing a key role in organization and assembly of cytoskeleton are O-GlcNAc-modified, including cytok...
The effects of clenbuterol beta(2)-agonist administration were investigated in normal and atrophied [15-day hindlimb-unloaded (HU)] rat soleus muscles. We showed that clenbuterol had a specific effect on muscle tissue, since it reduces soleus atrophy induced by HU. The study of Ca(2+) activation properties of single skinned fibers revealed that clenbuterol partly prevented the decrease in maximal tension after HU, with a preferential effect on fast-twitch fibers. Clenbuterol improved the Ca(2+) sensitivity in slow- and fast-twitch fibers by shifting the tension-pCa relationship toward lower Ca(2+) concentrations, but this effect was more marked after HU than in normal conditions. Whole muscle electrophoresis indicated slow-to-fast transitions of the myosin heavy chain isoforms for unloaded and for clenbuterol-treated soleus. The coupling of the two latter conditions did not, however, increase these phenotypical transformations. Our findings indicated that clenbuterol had an anabolic action and a beta(2)-adrenergic effect on muscle fibers and appeared to counteract some effects of unloading disuse conditions.
Changes in myosin heavy chain (MHC) mRNA and protein isoforms were investigated in single fibers from rat soleus muscle unloaded by hindlimb suspension for 4 and 7 days. Dramatic changes were seen after 4 days, when all fibers coexpressed slow and fast MHC mRNAs. Most fibers contained mRNAs for MHCIL L, MHCIIa, MHCIId(x), and MHCIIb. The up-regulation of the fast isoforms was only partially transmitted to the protein level. Atypical combinations of MHC mRNA isoforms, which deviated from the`next-neighbor rule', were frequent in fibers from unloaded soleus. These atypical combinations increased with time and were not observed in the controls. The results suggest that hindlimb suspension elicits in soleus muscle pronounced perturbations in the expression of MHC isoforms by disrupting transcriptional and translational activities.z 1999 Federation of European Biochemical Societies.
In striated muscles myosin light chain (MLC)2 phosphorylation regulates calcium sensitivity and mediates sarcomere organization. Little is known about the changes in MLC2 phosphorylation in relation to skeletal muscle plasticity. We studied changes in MLC2 phosphorylation in rats receiving three treatment conditions causing slow-to-fast transitions: 1) atrophy induced by 14 days of hindlimb suspension (HS), 2) hypertrophy induced by 14 days of clenbuterol administration (CB), and 3) 14 days of combined treatment (CB-HS). Three variants of the slow (MLC2s) and two variants of the fast MLC2 (MLC2f) isoform were separated with two-dimensional electrophoresis and identified with monoclonal and polyclonal antibodies specific for MLC2; their relative proportions were densitometrically quantified. In control soleus muscle MLC2s predominated over MLC2f (91.4 +/- 3.9% vs. 8.5 +/- 3.9%) and was separated into two spots, the less acidic spot being 73.5 +/- 4.3% of the total. All treatments caused a decrease of the less acidic unphosphorylated spot of MLC2s (CB: 64.1 +/- 5.6%, HS: 62.4 +/- 6.8%, CB-HS: 56.4 +/- 4.4%), the appearance of a third more acidic variant of MLC2s (representing 3.9-5.9% of total MLC2s), an increase of MLC2f (CB: 30.9 +/- 3.1%, HS: 23.9 +/- 3.3%, CB-HS: 25.3 +/- 3.9%), and the phosphorylation of a large fraction of MLC2f (CB: 30.4 +/- 6.7%, HS: 28.7 +/- 6.5%, CB-HS: 21.8 +/- 2.1%). Treatment with alkaline phosphatase or with protein phosphatase 1 (PP1) removed the most acidic spots of both MLC2f and MLC2s. We conclude that in rat skeletal muscles an increase of MLC2 phosphorylation is associated with the slow-to-fast transition regardless of whether hypertrophy or atrophy develops.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers