BackgroundMacrophage‐mediated chronic inflammation is mechanistically linked to insulin resistance and atherosclerosis. Although arginase I is considered antiinflammatory, the role of arginase II (Arg‐II) in macrophage function remains elusive. This study characterizes the role of Arg‐II in macrophage inflammatory responses and its impact on obesity‐linked type II diabetes mellitus and atherosclerosis.Methods and ResultsIn human monocytes, silencing Arg‐II decreases the monocytes’ adhesion to endothelial cells and their production of proinflammatory mediators stimulated by oxidized low‐density lipoprotein or lipopolysaccharides, as evaluated by real‐time quantitative reverse transcription‐polymerase chain reaction and enzyme‐linked immunosorbent assay. Macrophages differentiated from bone marrow cells of Arg‐II–deficient (Arg‐II−/−) mice express lower levels of lipopolysaccharide‐induced proinflammatory mediators than do macrophages of wild‐type mice. Importantly, reintroducing Arg‐II cDNA into Arg‐II−/− macrophages restores the inflammatory responses, with concomitant enhancement of mitochondrial reactive oxygen species. Scavenging of reactive oxygen species by N‐acetylcysteine prevents the Arg‐II–mediated inflammatory responses. Moreover, high‐fat diet–induced infiltration of macrophages in various organs and expression of proinflammatory cytokines in adipose tissue are blunted in Arg‐II−/− mice. Accordingly, Arg‐II−/− mice reveal lower fasting blood glucose and improved glucose tolerance and insulin sensitivity. Furthermore, apolipoprotein E (ApoE)–deficient mice with Arg‐II deficiency (ApoE−/−Arg‐II−/−) display reduced lesion size with characteristics of stable plaques, such as decreased macrophage inflammation and necrotic core. In vivo adoptive transfer experiments reveal that fewer donor ApoE−/−Arg‐II−/− than ApoE−/−Arg‐II+/+ monocytes infiltrate into the plaque of ApoE−/−Arg‐II+/+ mice. Conversely, recipient ApoE−/−Arg‐II−/− mice accumulate fewer donor monocytes than do recipient ApoE−/−Arg‐II+/+ animals.ConclusionsArg‐II promotes macrophage proinflammatory responses through mitochondrial reactive oxygen species, contributing to insulin resistance and atherogenesis. Targeting Arg‐II represents a potential therapeutic strategy in type II diabetes mellitus and atherosclerosis. (J Am Heart Assoc. 2012;1:e000992 doi: 10.1161/JAHA.112.000992.)
SummaryAugmented activities of both arginase and S6K1 are involved in endothelial dysfunction in aging. This study was to investigate whether or not there is a crosstalk between arginase and S6K1 in endothelial inflammation and aging in senescent human umbilical vein endothelial cells and in aging mouse models. We show increased arginase-II (Arg-II) expression ⁄ activity in senescent endothelial cells. Silencing Arg-II in senescent cells suppresses eNOSuncoupling, several senescence markers such as senescence-associated-b-galactosidase activity, p53-S15, p21, and expression of vascular adhesion molecule-1 (VCAM1) and intercellular adhesion molecule-1 (ICAM1). Conversely, overexpressing Arg-II in nonsenescent cells promotes eNOS-uncoupling, endothelial senescence, and enhances VCAM1 ⁄ ICAM1 levels and monocyte adhesion, which are inhibited by co-expressing superoxide dismutase-1. Moreover, overexpressing S6K1 in nonsenescent cells increases, whereas silencing S6K1 in senescent cells decreases Arg-II gene expression ⁄ activity through regulation of Arg-II mRNA stability. Furthermore, S6K1 overexpression exerts the same effects as Arg-II on endothelial senescence and inflammation responses, which are prevented by silencing Arg-II, demonstrating a role of Arg-II as the mediator of S6K1-induced endothelial aging. Interestingly, mice that are deficient in Arg-II gene (Arg-II ) ⁄ ) ) are not only protected from age-associated increase in Arg-II, VCAM1 ⁄ ICAM1, aging markers, and eNOS-uncoupling in the aortas but also reveal a decrease in S6K1 activity. Similarly, silencing Arg-II in senescent cells decreases S6K1 activity, demonstrating that Arg-II also stimulates S6K1 in aging. Our study reveals a novel mechanism of mutual positive regulation between S6K1 and Arg-II in endothelial inflammation and aging. Targeting S6K1 and ⁄ or Arg-II may decelerate vascular aging and age-associated cardiovascular disease development.
Aims Naturally secreted nanovesicles, known as exosomes, play important roles in stem cell-mediated cardioprotection. We have previously demonstrated that atorvastatin (ATV) pretreatment improved the cardioprotective effects of mesenchymal stem cells (MSCs) in a rat model of acute myocardial infarction (AMI). The aim of this study was to investigate if exosomes derived from ATV-pretreated MSCs exhibit more potent cardioprotective function in a rat model of AMI and if so to explore the underlying mechanisms. Methods and results Exosomes were isolated from control MSCs (MSC-Exo) and ATV-pretreated MSCs (MSCATV-Exo) and were then delivered to endothelial cells and cardiomyocytes in vitro under hypoxia and serum deprivation (H/SD) condition or in vivo in an acutely infarcted Sprague-Dawley rat heart. Regulatory genes and pathways activated by ATV pretreatment were explored using genomics approaches and functional studies. In vitro, MSCATV-Exo accelerated migration, tube-like structure formation, and increased survival of endothelial cells but not cardiomyocytes, whereas the exosomes derived from MSCATV-Exo-treated endothelial cells prevented cardiomyocytes from H/SD-induced apoptosis. In a rat AMI model, MSCATV-Exo resulted in improved recovery in cardiac function, further reduction in infarct size and reduced cardiomyocyte apoptosis compared to MSC-Exo. In addition, MSCATV-Exo promoted angiogenesis and inhibited the elevation of IL-6 and TNF-α in the peri-infarct region. Mechanistically, we identified lncRNA H19 as a mediator of the role of MSCATV-Exo in regulating expression of miR-675 and activation of proangiogenic factor VEGF and intercellular adhesion molecule-1. Consistently, the cardioprotective effects of MSCATV-Exo was abrogated when lncRNA H19 was depleted in the ATV-pretreated MSCs and was mimicked by overexpression of lncRNA H19. Conclusion Exosomes obtained from ATV-pretreated MSCs have significantly enhanced therapeutic efficacy for treatment of AMI possibly through promoting endothelial cell function. LncRNA H19 mediates, at least partially, the cardioprotective roles of MSCATV-Exo in promoting angiogenesis.
A bacterium producing an extracellular bioflocculant was isolated from contaminated LB medium and identified as Bacillus licheniformis by 16S rRNA gene sequencing and its biochemical/physiological characteristics. The optimum culture conditions for flocculant production were an initial medium pH of 7.2 and an inoculum size of 4% (vol/vol). The maximum flocculating activity (700 U/ml) was obtained after cultivation at 37°C for 48 h. Chemical analyses of the purified bioflocculant revealed that it was a proteoglycan composed of 89% carbohydrate and 11% protein (wt/wt). The mass ratio of neutral sugar, amino sugar, and uronic acid was measured at 7.9:4:1. Infrared spectrometry further indicated the presence of carboxyl, hydroxyl, and amino groups, typical of heteropolysaccharide. The average mass of the bioflocculant was calculated to be 1.76 ؋ 10 6 Da. Scanning electron microscopy (SEM) images of the bioflocculant showed an irregular structure with netted texture. Its efficient flocculation capabilities suggest potential applications in industry.
Impaired autophagy function and enhanced ARG2 (arginase 2)-MTOR (mechanistic target of rapamycin) crosstalk are implicated in vascular aging and atherosclerosis. We are interested in the role of ARG2 and the potential underlying mechanism(s) in modulation of endothelial autophagy. Using human nonsenescent “young” and replicative senescent endothelial cells as well as Apolipoprotein E-deficient (apoe−/−Arg2+/+) and Arg2-deficient apoe−/− (apoe−/−arg2−/−) mice fed a high-fat diet for 10 wk as the atherosclerotic animal model, we show here that overexpression of ARG2 in the young cells suppresses endothelial autophagy with concomitant enhanced expression of RICTOR, the essential component of the MTORC2 complex, leading to activation of the AKT-MTORC1-RPS6KB1/S6K1 (ribosomal protein S6 kinase, 70kDa, polypeptide 1) cascade and inhibition of PRKAA/AMPK (protein kinase, AMP-activated, α catalytic subunit). Expression of an inactive ARG2 mutant (H160F) had the same effect. Moreover, silencing RPS6KB1 or expression of a constitutively active PRKAA prevented autophagy suppression by ARG2 or H160F. In senescent cells, enhanced ARG2-RICTOR-AKT-MTORC1-RPS6KB1 and decreased PRKAA signaling and autophagy were observed, which was reversed by silencing ARG2 but not by arginase inhibitors. In line with the above observations, genetic ablation of Arg2 in apoe−/− mice reduced RPS6KB1, enhanced PRKAA signaling and endothelial autophagy in aortas, which was associated with reduced atherosclerosis lesion formation. Taken together, the results demonstrate that ARG2 impairs endothelial autophagy independently of the L-arginine ureahydrolase activity through activation of RPS6KB1 and inhibition of PRKAA, which is implicated in atherogenesis.
Ferroptosis, a recently identified and iron-dependent cell death, differs from other cell death such as apoptosis, necroptosis, pyroptosis, and autophagy-dependent cell death. This form of cell death does not exhibit typical morphological and biochemical characteristics, including cell shrinkage, mitochondrial fragmentation, nuclear condensation. The dysfunction of lipid peroxide clearance, the presence of redox-active iron as well as oxidation of polyunsaturated fatty acid (PUFA)-containing phospholipids are three essential features of ferroptosis. Iron metabolism and lipid peroxidation signaling are increasingly recognized as central mediators of ferroptosis. Ferroptosis plays an important role in the regulation of oxidative stress and inflammatory responses. Accumulating evidence suggests that ferroptosis is implicated in a variety of cardiovascular diseases such as atherosclerosis, stroke, ischemia-reperfusion injury, and heart failure, indicating that targeting ferroptosis will present a novel therapeutic approach against cardiovascular diseases. Here, we provide an overview of the features, process, function, and mechanisms of ferroptosis, and its increasingly connected relevance to oxidative stress, inflammation, and cardiovascular diseases.
BackgroundVascular smooth muscle cell (VSMC) senescence and apoptosis are involved in atherosclerotic plaque vulnerability. Arginase‐II (Arg‐II) has been shown to promote vascular dysfunction and plaque vulnerability phenotypes in mice through uncoupling of endothelial nitric oxide synthase and activation of macrophage inflammation. The function of Arg‐II in VSMCs with respect to plaque vulnerability is unknown. This study investigated the functions of Arg‐II in VSMCs linking to plaque vulnerability.Methods and ResultsIn vitro studies were performed on VSMCs isolated from human umbilical veins, whereas in vivo studies were performed on atherosclerosis‐prone apolipoprotein E‐deficient (ApoE−/−) mice. In nonsenescent VSMCs, overexpressing wild‐type Arg‐II or an l‐arginine ureahydrolase inactive Arg‐II mutant (H160F) caused similar effects on mitochondrial dysfunction, cell apoptosis, and senescence, which were abrogated by silencing p66Shc or p53. The activation of p66Shc but not p53 by Arg‐II was dependent on extracellular signal‐regulated kinases (ERKs) and sequential activation of 40S ribosomal protein S6 kinase 1 (S6K1)—c‐Jun N‐terminal kinases (JNKs). In senescent VSMCs, Arg‐II and S6K1, ERK‐p66Shc, and p53 signaling levels were increased. Silencing Arg‐II reduced all these signalings and cell senescence/apoptosis. Conversely, silencing p66Shc reduced ERK and S6K1 signaling and Arg‐II levels and cell senescence/apoptosis. Furthermore, genetic ablation of Arg‐II in ApoE−/− mice reduced the aforementioned signaling and apoptotic VSMCs in the plaque of aortic roots.ConclusionsArg‐II, independently of its l‐arginine ureahydrolase activity, promotes mitochondrial dysfunction leading to VSMC senescence/apoptosis through complex positive crosstalk among S6K1‐JNK, ERK, p66Shc, and p53, contributing to atherosclerotic vulnerability phenotypes in mice.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers