With recent progress in interfacial solar steam generation, direct solar desalination is considered a promising technology for providing a clean water solution through a cost effective and environmental‐friendly pathway. As a high and stable water production rate is the key to enable widespread applications, salt deposition becomes a critical issue that needs to be addressed. Herein, the authors demonstrate that a flexible Janus absorber fabricated by sequential electrospinning can enable stable and efficient solar desalination. Taking advantage of the unique structure of Janus, two functions of steam generation, solar absorption and water pumping, are decoupled into different layers, with an upper hydrophobic carbon black nanoparticles (CB) coating polymethylmethacrylate (PMMA) layer for light absorption, and a lower hydrophilic polyacrylonitrile (PAN) layer for pumping water. Therefore, salt can only be deposited in the hydrophilic PAN layer and quickly be dissolved because of continuous water pumping. Janus absorber demonstrates high efficiency (72%) and stable water output (1.3 kg m–2 h–1, over 16 days) under 1‐sun, not achieved in most previous absorbers. With a unique structure design achieved by scalable process, this flexible Janus absorber provides an efficient, stable and portable solar steam generator for direct solar desalination.
Naturally occurring plant compounds including tannins, saponins and essential oils are extensively assessed as natural alternatives to in-feed antibiotics. Tannins are a group of polyphenolic compounds that are widely present in plant region and possess various biological activities including antimicrobial, anti-parasitic, anti-viral, antioxidant, anti-inflammatory, immunomodulation, etc. Therefore, tannins are the major research subject in developing natural alternative to in-feed antibiotics. Strong protein affinity is the well-recognized property of plant tannins, which has successfully been applied to ruminant nutrition to decrease protein degradation in the rumen, and thereby improve protein utilization and animal production efficiency. Incorporations of tannin-containing forage in ruminant diets to control animal pasture bloat, intestinal parasite and pathogenic bacteria load are another 3 important applications of tannins in ruminant animals. Tannins have traditionally been regarded as “anti-nutritional factor” for monogastric animals and poultry, but recent researches have revealed some of them, when applied in appropriate manner, improved intestinal microbial ecosystem, enhanced gut health and hence increased productive performance. The applicability of plant tannins as an alternative to in-feed antibiotics depends on many factors that contribute to the great variability in their observed efficacies.
In recent years, interfacial solar vapor generation has shown great potential in realizing desalination and wastewater treatment with high energy conversion efficiency. However, high evaporation rate cannot be maintained because of the seemingly unavoidable fouling or salt accumulation on the solar absorbers. The degradation accelerates as the solute concentration increases. Here, we demonstrate a water lily–inspired hierarchical structure that enables efficient evaporation (~80% solar-to-vapor efficiency) out of high-salinity brine [10 weight % (wt %)] and wastewater containing heavy metal ions (30 wt %). More notably, neither decrease in evaporation rate nor fouling on absorbers was observed during the entire evaporation process until water and solute were completely separated. With the capabilities of stable and high-rate evaporation out of high-salinity brine and the effective separation of solute from water, it is expected that this technology can have direct implications in various fields such as wastewater treatment, sea-salt production, and metal recycling.
High-performance unipolar n-type polymer semiconductors are critical for advancing the field of organic electronics, which relies on the design and synthesis of new electron-deficient building blocks with good solubilizing capability, favorable geometry, and optimized electrical properties. Herein, two novel imide-functionalized thiazoles, 5,5'-bithiazole-4,4'-dicarboxyimide (BTzI) and 2,2'-bithiazolothienyl-4,4',10,10'-tetracarboxydiimide (DTzTI), are successfully synthesized. Single crystal analysis and physicochemical study reveal that DTzTI is an excellent building block for constructing all-acceptor homopolymers, and the resulting polymer poly(2,2'-bithiazolothienyl-4,4',10,10'-tetracarboxydiimide) (PDTzTI) exhibits unipolar n-type transport with a remarkable electron mobility (μ ) of 1.61 cm V s , low off-currents (I ) of 10 -10 A, and substantial current on/off ratios (I /I ) of 10 -10 in organic thin-film transistors. The all-acceptor homopolymer shows distinctive advantages over prevailing n-type donor-acceptor copolymers, which suffer from ambipolar transport with high I s > 10 A and small I /I s < 10 . The results demonstrate that the all-acceptor approach is superior to the donor-acceptor one, which results in unipolar electron transport with more ideal transistor performance characteristics.
BackgroundDescribing the microbial populations present in small grain silage and understanding their changes during ensiling is of interest for improving the nutrient value of these important forage crops. Barley, oat and triticale forages as well as an intercropped mixture of the 3 crops were harvested and ensiled in mini silos for a period of 90 days, followed by 14 days of aerobic exposure. Changes in fermentation characteristics and nutritive value were assessed in terminal silages and bacterial and fungal communities during ensiling and aerobic exposure were described using 16S and 18S rDNA sequencing, respectively.ResultsAll small grain silages exhibited chemical traits that were associated with well ensiled forages, such as low pH value (4.09 ± 0.28) and high levels of lactic acid (59.8 ± 14.59 mg/g DM). The number of microbial core genome operational taxonomic units (OTUs) decreased with time of ensiling. Taxonomic bacterial community profiles were dominated by the Lactobacillales after fermentation, with a notable increase in Bacillales as a result of aerobic exposure. Diversity of the fungal core microbiome was shown to also be reduced during ensiling. Operational taxonomic units assigned to filamentous fungi were found in the core microbiome at ensiling and after aerobic exposure, whereas the Saccharomycetales were the dominate yeast population after 90 days of ensiling and aerobic exposure. Bacterial and fungal orders typically associated with silage spoilage were identified in the core microbiome after aerobic exposure.ConclusionNext Generation Sequencing was successfully used to describe bacterial communities and the first record of fungal communities throughout the process of ensiling and utilization. Adequately describing the microbial ecology of silages could lead to improved ensiling practices and the selection of silage inoculants that act synergistically with the natural forage microbiome.Electronic supplementary materialThe online version of this article (doi:10.1186/s12866-017-0947-0) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.