Although platelet-derived growth factors (PDGFs) and receptors (PDGFRs) are abundantly expressed in the central nervous system, their functions largely remain elusive. We investigated the role of PDGFR-β in tissue responses and functional recovery after photothrombolic middle cerebral artery occlusion (MCAO). In the normal adult mouse brain, PDGFR-β was mainly localized in neurons and in pericyte/vascular smooth muscle cells (PC/vSMCs). From 3 to 28 days after MCAO, postnatally induced systemic PDGFR-β knockout mice (Esr-KO) exhibited the delayed recovery of body weight and behavior, and larger infarction volume than controls. In Esr-KO, PC/vSMC coverage was decreased and vascular leakage of infused fluorescent-labeled albumin was extensive within the ischemic lesion, but not in the uninjured cerebral cortex. Angiogenesis levels were comparable between Esr-KO and controls. In another PDGFR-β conditional KO mouse (Nestin-KO), PDGFR-β was deleted in neurons and astrocytes from embryonic day 10.5, but was preserved in PC/vSMCs. After MCAO, vascular leakage and infarction volume in Nestin-KO were worse than controls, but partly improved compared with Esr-KO. Astroglial scar formation in both Esr-KO and Nestin-KO was similarly reduced compared with controls after MCAO. These data suggested that PDGFR-β signaling is crucial for neuroprotection, endogenous tissue repair, and functional recovery after stroke by targeting neurons, PC/vSMCs, and astrocytes.
Recent advances in functional imaging of human brain activity in stroke patients, e.g., functional magnetic resonance imaging, have revealed that cortical hemisphere contralateral to the infarction plays an important role in the recovery process. However, underlying mechanisms occurring in contralateral hemisphere during functional recovery have not been elucidated. We experimentally induced a complete infarction of somatosensory cortex in right hemisphere of mice and examined the neuronal changes in contralateral (left) somatosensory cortex during recovery. Both basal and ipsilateral somatosensory stimuli-evoked neuronal activity in left (intact) hemisphere transiently increased 2 d after stroke, followed by an increase in the turnover rate of usually stable mushroom-type synaptic spines at 1 week, observed by using two-photon imaging in vivo. At 4 weeks after stroke, when functional recovery had occurred, a new pattern of electrical circuit activity in response to somatosensory stimuli was established in intact ipsilateral hemisphere. Thus, the left somatosensory cortex can compensate for the loss of the right somatosensory cortex by remodeling neuronal circuits and establishing new sensory processing. This finding could contribute to establish the effective clinical treatments targeted on the intact hemisphere for the recovery of impaired functions and to achieve better quality of life of patients.
Although platelet-derived growth factor receptor beta (PDGFR-β) mediates the recruitment of vascular pericytes into ischemic lesion to restore the blood-brain barrier (BBB) dysfunction, its mechanisms still remain elusive . Compared with control PDGFR-β mice (Floxed), postnatally induced systemic PDGFR-β knockout mice (Esr-KO) not only showed severe brain edema, neurologic functional deficits, decreased expression of tight junction (TJ) proteins, abundant endothelial transcytosis, and deformed TJs in the BBB, but also showed reduced expression of transforming growth factor-β (TGF-β) protein after photothrombotic middle cerebral artery occlusion (MCAO). In endothelial-pericyte co-culture, an in vitro model of BBB, the increment in the barrier function of endothelial monolayer induced by pericyte co-culture was completely cancelled by silencing PDGFR-β gene expression in pericytes, and was additively improved by PDGFR-β and TGF-β receptor signals under hypoxia condition. Exogenous PDGF-BB increased the expression of p-Smad2/3, while anti-TGF-β1 antibody at least partially inhibited the phosphorylation of Smad2/3 after PDGF-BB treatment in vitro. Furthermore, pre-administration of TGF-β1 partially alleviated edema formation, neurologic dysfunction, and TJs reduction in Esr-KO mice after MCAO. Accordingly, PDGFR-β signalling, via TGF-β signalling, may be crucial for restoration of BBB integrity after cerebral ischemia and therefore represents a novel potential therapeutic target.
Glutamate transporters play a critical role in the maintenance of low extracellular concentrations of glutamate, which prevents the overactivation of post-synaptic glutamate receptors. Four distinct glutamate transporters, GLAST/EAAT1, GLT-1/EAAT2, EAAC1/EAAT3 and EAAT4, are distributed in the molecular layer of the cerebellum, especially near glutamatergic synapses in Purkinje cells (PCs). This review summarizes the current knowledge about the differential roles of these transporters at excitatory synapses of PCs. Data come predominantly from electrophysiological experiments in mutant mice that are deficient in each of these transporter genes. GLAST expressed in Bergmann glia contributes to the clearing of the majority of glutamate that floods out of the synaptic cleft immediately after transmitter release from the climbing fibre (CF) and parallel fibre (PF) terminals. It is indispensable to maintain a one-to-one relationship in synaptic transmission at the CF synapses by preventing transcellular glutamate spillover. GLT-1 plays a similar but minor role in the uptake of glutamate as GLAST. Although the loss of neither GLAST nor GLT-1 affects cerebellar morphology, the deletion of both GLAST and GLT-1 genes causes the death of the mutant animal and hinders the folium formation of the cerebellum. EAAT4 removes the low concentrations of glutamate that escape from uptake by glial transporters, preventing the transmitter from spilling over into neighbouring synapses. It also regulates the activation of metabotropic glutamate receptor 1 (mGluR1) in perisynaptic regions at PF synapses, which in turn affects mGluR1-mediated events including slow EPSCs and long-term depression. No change in synaptic function is detected in mice that are deficient in EAAC1.
In the present study, we showed that Gd was transferred to pups and was retained in their brain during postnatal development. Gadolinium retention may lead to impaired brain development. These findings indicate that the use of GBCAs in pregnant women should be avoided because it may have adverse effects on the fetus, particularly on brain development.
After ischemic stroke, the corresponding area contralateral to the lesion may partly compensate for the loss of function. We previously reported the remodeling of neuronal circuits in the contralateral somatosensory cortex (SSC) during the first week after infarction for processing bilateral information, resulting in functional compensation. However, the underlying processes in the contralateral hemisphere after stroke have not yet been fully elucidated. Recent studies have shown that astrocytes may play critical roles in synaptic reorganization and functional compensation after a stroke. Thus, we aim to clarify the contribution of astrocytes using a rodent stroke model. In vivo calcium imaging showed a significantly large number of astrocytes in the contralateral SSC responding to ipsilateral limb stimulation at the first week after infarction. Simultaneously, extracellular glutamine level increased, indicating the involvement of astrocytes in the conversion of glutamate to glutamine, which may be an important process for functional recovery. This hypothesis was supported further by the observation that application of (2S,3S)-3-{3-[4-(trifluoromethyl)benzoylamino]benzyloxy} aspartate, a glial glutamate transporter blocker, disturbed the functional recovery. These findings indicate the involvement of astrocytes in functional remodeling/recovery in the area contralateral to the lesion. Our study has provided new insights into the mechanisms underlying synaptic remodeling after cerebral infarction, which contributes to the development of effective therapeutic approaches for patients after a stroke.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.